Adoptive Cellular Therapy for the Treatment of Cancer

  • Cassian Yee


Chronic Myeloid Leukemia Metastatic Melanoma Adoptive Transfer Chimeric Antigen Receptor Adoptive Immunotherapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Overwijk, W.W., A. Tsung, K.R. Irvine, M.R. Parkhurst, T.J. Goletz, K. Tsung, M.W. Carroll, C. Liu, B. Moss, S.A. Rosenberg, and N.P. Restifo. 1998. gp100/pmel 17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med 188:277–286.PubMedCrossRefGoogle Scholar
  2. 2.
    Sakai, K., A.E. Chang, and S.Y. Shu. 1990. Phenotype analyses and cellular mechanisms of the pre-effector T-lymphocyte response to a progressive syngeneic murine sarcoma. Cancer Res 50:4371–4376.PubMedGoogle Scholar
  3. 3.
    Greenberg, P.D. 1986. Therapy of murine leukemia with cyclophosphamide and immune Lyt-2+ cells: cytolytic T cells can mediate eradication of disseminated leukemia. Journal of Immunology 136:1917–1922.Google Scholar
  4. 4.
    Ossendorp, F., E. Mengede, M. Camps, R. Filius, and C.J. Melief. 1998. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J Exp Med 187:693–702.PubMedCrossRefGoogle Scholar
  5. 5.
    Surman, D.R., M.E. Dudley, W.W. Overwijk, and N.P. Restifo. 2000. Cutting edge: CD4+ T cell control of CD8+ T cell reactivity to a model tumor antigen. J Immunol 164:562–565.PubMedGoogle Scholar
  6. 6.
    Greenberg, P.D., D.E. Kern, and M.A. Cheever. 1985. Therapy of disseminated murine leukemia with cyclophosphamide and immune Lyt-1+,2- T cells. Tumor eradication does not require participation of cytotoxic T cells. Journal of Experimental Medicine 161:1122–1134.PubMedCrossRefGoogle Scholar
  7. 7.
    Frey, A.B., and S. Cestari. 1997. Killing of rat adenocarcinoma 13762 in situ by adoptive transfer of CD4+ anti-tumor T cells requires tumor expression of cell surface MHC class II molecules. Cell Immunol 178:79–90.PubMedCrossRefGoogle Scholar
  8. 8.
    Cameron, R.B., P.J. Spiess, and S.A. Rosenberg. 1990. Synergistic antitumor activity of tumor-infiltrating lymphocytes, interleukin 2, and local tumor irradiation. Studies on the mechanism of action. J Exp Med 171:249–263.PubMedCrossRefGoogle Scholar
  9. 9.
    Cheever, M.A., J.A. Thompson, D.E. Kern, and P.D. Greenberg. 1985. 1985 2 (IL 2) administered in vivo: influence of IL 2 route and timing on T cell growth. Journal of Immunology 134:3895–3900.Google Scholar
  10. 10.
    Cheever, M.A., P.D. Greenberg, A. Fefer, and S. Gillis. 1982. 1982 of the anti-tumor therapeutic efficacy of long-term cultured T lymphocytes by in vivo administration of purified interleukin 2. J Exp Med 155:968–980.PubMedCrossRefGoogle Scholar
  11. 11.
    Zeh, H.J., D. Perry-Lalley, M.E. Dudley, S.A. Rosenberg, and J.C. Yang. 1999. High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. Journal of Immunology 162:989–994.Google Scholar
  12. 12.
    Alexander-Miller, M.A., G.R. Leggatt, and J.A. Berzofsky. 1996. 1996 expansion of high- or low-avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proceedings of the National Academy of Sciences of the United States of America 93:4102–4107.PubMedCrossRefGoogle Scholar
  13. 13.
    Greenberg, P.D. 1991. Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells. Adv Immunol 49:281–355.PubMedGoogle Scholar
  14. 14.
    Awwad, M., and R.J. North. 1989. Cyclophosphamide-induced immunologically mediated regression of a cyclophosphamide-resistant murine tumor: a consequence of eliminating precursor L3T4+ suppressor T-cells. Cancer Res 49:1649–1654.PubMedGoogle Scholar
  15. 15.
    North, R.J., and M. Awwad. 1987. T cell suppression as an obstacle to immunologically-mediated tumor regression: elimination of suppression results in regression. Prog Clin Biol Res 244:345–358.PubMedGoogle Scholar
  16. 16.
    Townsend, S.E., and J.P. Allison. 1993. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells [see comments]. Science 259:368–370.PubMedCrossRefGoogle Scholar
  17. 17.
    Dranoff, G., E. Jaffee, A. Lazenby, P. Golumbek, H. Levitsky, K. Brose, V. Jackson, H. Hamada, D. Pardoll, and R.C. Mulligan. 1993. 1993 with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proceedings of the National Academy of Sciences of the United States of America 90:3539–3543.PubMedCrossRefGoogle Scholar
  18. 18.
    Overwijk, W.W., M.R. Theoret, S.E. Finkelstein, D.R. Surman, L.A. de Jong, F.A. Vyth-Dreese, T.A. Dellemijn, P.A. Antony, P.J. Spiess, D.C. Palmer, D.M. Heimann, C.A. Klebanoff, Z. Yu, L.N. Hwang, L. Feigenbaum, A.M. Kruisbeek, S.A. Rosenberg, and N.P. Restifo. 2003. 2003 regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198:569–580.PubMedCrossRefGoogle Scholar
  19. 19.
    Weiden, P.L., K.M. Sullivan, N. Flournoy, R. Storb, and E.D. Thomas. 1981. Antileukemic effect of chronic graft-versus-host disease: contribution to improved survival after allogeneic marrow transplantation. N Engl J Med 304:1529–1533.PubMedCrossRefGoogle Scholar
  20. 20.
    Porter, D.L., M.S. Roth, C. McGarigle, J.L. Ferrara, and J.H. Antin. 1994. Induction of graft-versus-host disease as immunotherapy for relapsed chronic myeloid leukemia. N Engl J Med 330:100–106.PubMedCrossRefGoogle Scholar
  21. 21.
    Kolb, H.J., J. Mittermuller, C. Clemm, E. Holler, G. Ledderose, G. Brehm, M. Heim, and W. Wilmanns. 1990. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76:2462–2465.PubMedGoogle Scholar
  22. 22.
    Dazzi, F., R.M. Szydlo, N.C. Cross, C. Craddock, J. Kaeda, E. Kanfer, K. Cwynarski, E. Olavarria, A. Yong, J.F. Apperley, and J.M. Goldman. 2000. Durability of responses following donor lymphocyte infusions for patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood 96:2712–2716.PubMedGoogle Scholar
  23. 23.
    Soiffer, R.J., E.P. Alyea, E. Hochberg, C. Wu, C. Canning, B. Parikh, D. Zahrieh, I. Webb, J. Antin, and J. Ritz. 2002. Randomized trial of CD8+ T-cell depletion in the prevention of graft-versus-host disease associated with donor lymphocyte infusion. Biol Blood Marrow Transplant 8:625–632.PubMedCrossRefGoogle Scholar
  24. 24.
    Bonini, C., G. Ferrari, S. Verzeletti, P. Servida, E. Zappone, L. Ruggieri, M. Ponzoni, S. Rossini, F. Mavilio, C. Traversari, and C. Bordignon. 1997. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia [see comments]. Science 276:1719–1724.PubMedCrossRefGoogle Scholar
  25. 25.
    Kolb, H.J., A. Schattenberg, J.M. Goldman, B. Hertenstein, N. Jacobsen, W. Arcese, P. Ljungman, A. Ferrant, L. Verdonck, D. Niederwieser, F. van Rhee, J. Mittermueller, T. de Witte, E. Holler, and H. Ansari. 1995. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86:2041–2050.PubMedGoogle Scholar
  26. 26.
    Porter, D.L., B.L. Levine, N. Bunin, E.A. Stadtmauer, S.M. Luger, S. Goldstein, A. Loren, J. Phillips, S. Nasta, A. Perl, S. Schuster, D. Tsai, A. Sohal, E. Veloso, S. Emerson, and C.H. June. 2006. A phase 1 trial of donor lymphocyte infusions expanded and activated ex vivo via CD3/CD28 costimulation. Blood 107:1325–1331.PubMedCrossRefGoogle Scholar
  27. 27.
    Rosenberg, S.A., J.R. Yannelli, J.C. Yang, S.L. Topalian, D.J. Schwartzentruber, J.S. Weber, D.R. Parkinson, C.A. Seipp, J.H. Einhorn, and D.E. White. 1994. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2 [see comments]. Journal of the National Cancer Institute 86:1159–1166.PubMedCrossRefGoogle Scholar
  28. 28.
    Chang, A.E., A. Aruga, M.J. Cameron, V.K. Sondak, D.P. Normolle, B.A. Fox, and S. Shu. 1997. Adoptive immunotherapy with vaccine-primed lymph node cells secondarily activated with anti-CD3 and interleukin-2. Journal of Clinical Oncology 15:796–807.PubMedGoogle Scholar
  29. 29.
    Riddell, S.R., and P.D. Greenberg. 1990. The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. Journal of Immunological Methods 128:189–201.PubMedCrossRefGoogle Scholar
  30. 30.
    Yee, C., J.A. Thompson, D. Byrd, S.R. Riddell, P. Roche, E. Celis, and P.D. Greenberg. 2002. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: In vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci U S A 99:16168–16173.PubMedCrossRefGoogle Scholar
  31. 31.
    Dudley, M.E., J.R. Wunderlich, P.F. Robbins, J.C. Yang, P. Hwu, D.J. Schwartzentruber, S.L. Topalian, R. Sherry, N.P. Restifo, A.M. Hubicki, M.R. Robinson, M. Raffeld, P. Duray, C.A. Seipp, L. Rogers-Freezer, K.E. Morton, S.A. Mavroukakis, D.E. White, and S.A. Rosenberg. 2002. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854.PubMedCrossRefGoogle Scholar
  32. 32.
    Heslop, H.E., M.K. Brenner, and C.M. Rooney. 1994. Donor T cells to treat EBV-associated lymphoma. N Engl J Med 331:679–680.PubMedCrossRefGoogle Scholar
  33. 33.
    Rooney, C.M., C.A. Smith, C.Y. Ng, S.K. Loftin, J.W. Sixbey, Y. Gan, D.K. Srivastava, L.C. Bowman, R.A. Krance, M.K. Brenner, and H.E. Heslop. 1998. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92:1549–1555.PubMedGoogle Scholar
  34. 34.
    Savoldo, B., J.A. Goss, M.M. Hammer, L. Zhang, T. Lopez, A.P. Gee, Y.F. Lin, R.E. Quiros-Tejeira, P. Reinke, S. Schubert, S. Gottschalk, M.J. Finegold, M.K. Brenner, C.M. Rooney, and H.E. Heslop. 2006. Treatment of solid organ transplant recipients with autologous Epstein Barr virus-specific cytotoxic T lymphocytes (CTL). Blood Google Scholar
  35. 35.
    Gustafsson, A., V. Levitsky, J.Z. Zou, T. Frisan, T. Dalianis, P. Ljungman, O. Ringden, J. Winiarski, I. Ernberg, and M.G. Masucci. 2000. Epstein-Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoproliferative disease: prophylactic infusion of EBV-specific cytotoxic T cells. Blood 95:807–814.PubMedGoogle Scholar
  36. 36.
    Straathof, K.C., C.M. Bollard, U. Popat, M.H. Huls, T. Lopez, M.C. Morriss, M.V. Gresik, A.P. Gee, H.V. Russell, M.K. Brenner, C.M. Rooney, and H.E. Heslop. 2005. Treatment of nasopharyngeal carcinoma with Epstein-Barr virus–specific T lymphocytes. Blood 105:1898–1904.PubMedCrossRefGoogle Scholar
  37. 37.
    Bollard, C.M., L. Aguilar, K.C. Straathof, B. Gahn, M.H. Huls, A. Rousseau, J. Sixbey, M.V. Gresik, G. Carrum, M. Hudson, D. Dilloo, A. Gee, M.K. Brenner, C.M. Rooney, and H.E. Heslop. 2004. Cytotoxic T Lymphocyte Therapy for Epstein-Barr Virus+ Hodgkin’s Disease. J Exp Med 200:1623–1633.PubMedCrossRefGoogle Scholar
  38. 38.
    Bollard, C.M., C. Rossig, M.J. Calonge, M.H. Huls, H.J. Wagner, J. Massague, M.K. Brenner, H.E. Heslop, and C.M. Rooney. 2002. Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood 99:3179–3187.PubMedCrossRefGoogle Scholar
  39. 39.
    van der Bruggen, P., C. Traversari, P. Chomez, C. Lurquin, E. De Plaen, B. Van den Eynde, A. Knuth, and T. Boon. 1991. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647.PubMedCrossRefGoogle Scholar
  40. 40.
    Sahin, U., O. Tureci, and M. Pfreundschuh. 1997. Serological identification of human tumor antigens. Current Opinion in Immunology 9:709–716.PubMedCrossRefGoogle Scholar
  41. 41.
    Scanlan, M.J., A.O. Gure, A.A. Jungbluth, L.J. Old, and Y.T. Chen. 2002. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev 188:22–32.PubMedCrossRefGoogle Scholar
  42. 42.
    Hermeking, H. 2003. Serial analysis of gene expression and cancer. Curr Opin Oncol 15:44–49.PubMedCrossRefGoogle Scholar
  43. 43.
    Cox, A.L., J. Skipper, Y. Chen, R.A. Henderson, T.L. Darrow, J. Shabanowitz, V.H. Engelhard, D.F. Hunt, and C.L. Slingluff, Jr. 1994. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 264:716–719.PubMedCrossRefGoogle Scholar
  44. 44.
    Henderson, R.A., A.L. Cox, K. Sakaguchi, E. Appella, J. Shabanowitz, D.F. Hunt, and V.H. Engelhard. 1993. Direct identification of an endogenous peptide recognized by multiple HLA-A2.1-specific cytotoxic T cells. Proc Natl Acad Sci U S A 90:10275–10279.PubMedCrossRefGoogle Scholar
  45. 45.
    Hunt, D.F., R.A. Henderson, J. Shabanowitz, K. Sakaguchi, H. Michel, N. Sevilir, A.L. Cox, E. Appella, and V.H. Engelhard. 1992. 1992 of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255:1261–1263.PubMedCrossRefGoogle Scholar
  46. 46.
    Van Voorhis, W.C., L.S. Hair, R.M. Steinman, and G. Kaplan. 1982. 1982 dendritic cells. Enrichment and characterization from peripheral blood. J Exp Med 155:1172–1187.PubMedCrossRefGoogle Scholar
  47. 47.
    Steinman, R.M., and M.D. Witmer. 1978. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc Natl Acad Sci U S A 75:5132–5136.PubMedCrossRefGoogle Scholar
  48. 48.
    Schultze, J.L., S. Michalak, M.J. Seamon, G. Dranoff, K. Jung, J. Daley, J.C. Delgado, J.G. Gribben, and L.M. Nadler. 1997. 199740-activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J Clin Invest 100:2757–2765.PubMedGoogle Scholar
  49. 49.
    Groh, V., Y.Q. Li, D. Cioca, N.N. Hunder, W. Wang, S.R. Riddell, C. Yee, and T. Spies. 2005. Efficient cross-priming of tumor antigen-specific T cells by dendritic cells sensitized with diverse anti-MICA opsonized tumor cells. Proc Natl Acad Sci U S A 102:6461–6466.PubMedCrossRefGoogle Scholar
  50. 50.
    Dhodapkar, K.M., J. Krasovsky, B. Williamson, and M.V. Dhodapkar. 2002. Antitumor monoclonal antibodies enhance cross-presentation ofcCellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J Exp Med 195:125–133.PubMedCrossRefGoogle Scholar
  51. 51.
    Liao, X., Y. Li, C. Bonini, S. Nair, E. Gilboa, P.D. Greenberg, and C. Yee. 2004. Transfection of RNA encoding tumor antigens following maturation of dendritic cells leads to prolonged presentation of antigen and the generation of high-affinity tumor-reactive cytotoxic T lymphocytes. Mol Ther 9:757–764.PubMedCrossRefGoogle Scholar
  52. 52.
    Boczkowski, D., S.K. Nair, J.H. Nam, H.K. Lyerly, and E. Gilboa, editors. 2000. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. 1028–1034 pp.Google Scholar
  53. 53.
    Boczkowski, D., S.K. Nair, D. Snyder, and E. Gilboa. 1996. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. Journal of Experimental Medicine 184:465–472.PubMedCrossRefGoogle Scholar
  54. 54.
    Zaremba, S., E. Barzaga, M. Zhu, N. Soares, K.Y. Tsang, and J. Schlom. 1997. Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Research 57:4570–4577.PubMedGoogle Scholar
  55. 55.
    Parkhurst, M.R., M.L. Salgaller, S. Southwood, P.F. Robbins, A. Sette, S.A. Rosenberg, and Y. Kawakami. 1996. Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues. Journal of Immunology 157:2539–2548.Google Scholar
  56. 56.
    Jackson, M.R., E.S. Song, Y. Yang, and P.A. Peterson. 1992. Empty and peptide-containing conformers of class I major histocompatibility complex molecules expressed in Drosophila melanogaster cells. Proc Natl Acad Sci U S A 89:12117–12121.PubMedCrossRefGoogle Scholar
  57. 57.
    Cai, Z., A. Brunmark, M.R. Jackson, D. Loh, P.A. Peterson, and J. Sprent. 1996. Transfected Drosophila cells as a probe for defining the minimal requirements for stimulating unprimed CD8+ T cells. Proc Natl Acad Sci U S A 93:14736–14741.PubMedCrossRefGoogle Scholar
  58. 58.
    Latouche, J.B., and M. Sadelain. 2000. Induction of human cytotoxic T lymphocytes by artificial antigen-presenting cells. Nat Biotechnol 18:405–409.PubMedCrossRefGoogle Scholar
  59. 59.
    Dupont, J., J.B. Latouche, C. Ma, and M. Sadelain. 2005. Artificial antigen-presenting cells transduced with telomerase efficiently expand epitope-specific, human leukocyte antigen-restricted cytotoxic T cells. Cancer Res 65:5417–5427.PubMedCrossRefGoogle Scholar
  60. 60.
    Maus, M.V., A.K. Thomas, D.G. Leonard, D. Allman, K. Addya, K. Schlienger, J.L. Riley, and C.H. June. 2002. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4–1BB. Nat Biotechnol 20:143–148.PubMedCrossRefGoogle Scholar
  61. 61.
    Maus, M.V., J.L. Riley, W.W. Kwok, G.T. Nepom, and C.H. June. 2003. 2003 tetramer-based artificial antigen-presenting cells for stimulation of CD4+ T cells. Clin Immunol 106:16–22.PubMedCrossRefGoogle Scholar
  62. 62.
    Oelke, M., M.V. Maus, D. Didiano, C.H. June, A. Mackensen, and J.P. Schneck. 2003. Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med 9:619–624.PubMedCrossRefGoogle Scholar
  63. 63.
    Hirano, N., M.O. Butler, Z. Xia, A. Berezovskaya, A.P. Murray, S. Ansen, and L.M. Nadler. 2006. Efficient presentation of naturally processed HLA class I peptides by artificial antigen-presenting cells for the generation of effective antitumor responses. Clin Cancer Res 12:2967–2975.PubMedCrossRefGoogle Scholar
  64. 64.
    Yee, C. 2005. Adoptive T cell therapy: Addressing challenges in cancer immunotherapy. J Transl Med 3:17.PubMedCrossRefGoogle Scholar
  65. 65.
    Mitchell, M.S. 2002. Phase I trial of adoptive immunotherapy with cytolytic T lymphocytes immunized against a tyrosinase epitope. Journal of Clinical Oncology 20:1075–1086.PubMedCrossRefGoogle Scholar
  66. 66.
    Dudley, M.E. 2001. Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. Journal of Immunotherapy 24:363–373.PubMedCrossRefGoogle Scholar
  67. 67.
    Dudley, M.E., J.R. Wunderlich, J.C. Yang, P. Hwu, D.J. Schwartzentruber, S.L. Topalian, R.M. Sherry, F.M. Marincola, S.F. Leitman, C.A. Seipp, L. Rogers-Freezer, K.E. Morton, A. Nahvi, S.A. Mavroukakis, D.E. White, and S.A. Rosenberg. 2002. A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. Journal of Immunotherapy 25:243–251.PubMedCrossRefGoogle Scholar
  68. 68.
    Meidenbauer, N., J. Marienhagen, M. Laumer, S. Vogl, J. Heymann, R. Andreesen, and A. Mackensen. 2003. Survival and tumor localization of adoptively transferred Melan-A-specific T cells in melanoma patients. J Immunol 170:2161–2169.PubMedGoogle Scholar
  69. 69.
    Mackensen, A., N. Meidenbauer, S. Vogl, M. Laumer, J. Berger, and R. Andreesen. 2006. Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma. J Clin Oncol 24:5060–5069.PubMedCrossRefGoogle Scholar
  70. 70.
    Tsuji, T., M. Yasukawa, J. Matsuzaki, T. Ohkuri, K. Chamoto, D. Wakita, T. Azuma, H. Niiya, H. Miyoshi, K. Kuzushima, Y. Oka, H. Sugiyama, H. Ikeda, and T. Nishimura. 2005. Generation of tumor-specific, HLA class I-restricted human Th1 and Tc1 cells by cell engineering with tumor peptide-specific T-cell receptor genes. Blood 106:470–476.PubMedCrossRefGoogle Scholar
  71. 71.
    Clay, T.M., M.C. Custer, P.J. Spiess, and M.I. Nishimura. 1999. 1999 use of T cell receptor genes to modify hematopoietic stem cells for the gene therapy of cancer. Pathol Oncol Res 5:3–15.PubMedCrossRefGoogle Scholar
  72. 72.
    Clay, T.M., M.C. Custer, J. Sachs, P. Hwu, S.A. Rosenberg, and M.I. Nishimura. 1999. Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J Immunol 163:507–513.PubMedGoogle Scholar
  73. 73.
    Morgan, R.A., M.E. Dudley, Y.Y. Yu, Z. Zheng, P.F. Robbins, M.R. Theoret, J.R. Wunderlich, M.S. Hughes, N.P. Restifo, and S.A. Rosenberg. 2003. High efficiency TCR gene transfer into primary human lymphocytes affords avid recognition of melanoma tumor antigen glycoprotein 100 and does not alter the recognition of autologous melanoma antigens. J Immunol 171:3287–3295.PubMedGoogle Scholar
  74. 74.
    Gade, T.P., W. Hassen, E. Santos, G. Gunset, A. Saudemont, M.C. Gong, R. Brentjens, X.S. Zhong, M. Stephan, J. Stefanski, C. Lyddane, J.R. Osborne, I.M. Buchanan, S.J. Hall, W.D. Heston, I. Riviere, S.M. Larson, J.A. Koutcher, and M. Sadelain. 2005. Targeted elimination of prostate cancer by genetically directed human T lymphocytes. Cancer Res 65:9080–9088.PubMedCrossRefGoogle Scholar
  75. 75.
    Zhao, Y., Z. Zheng, P.F. Robbins, H.T. Khong, S.A. Rosenberg, and R.A. Morgan. 2005. Primary human lymphocytes transduced with NY-ESO-1 antigen-specific TCR genes recognize and kill diverse human tumor cell lines. J Immunol 174:4415–4423.PubMedGoogle Scholar
  76. 76.
    Willemsen, R.A., M.E. Weijtens, C. Ronteltap, Z. Eshhar, J.W. Gratama, P. Chames, and R.L. Bolhuis. 2000. Grafting primary human T lymphocytes with cancer-specific chimeric single chain and two chain TCR. Gene Ther 7:1369–1377.PubMedCrossRefGoogle Scholar
  77. 77.
    Calogero, A., G.A. Hospers, K.M. Kruse, P.I. Schrier, N.H. Mulder, E. Hooijberg, and L.F. de Leij. 2000. Retargeting of a T cell line by anti MAGE-3/HLA-A2 alpha beta TCR gene transfer. Anticancer Res 20:1793–1799.PubMedGoogle Scholar
  78. 78.
    Kuball, J., M.L. Dossett, M. Wolfl, W.Y. Ho, R.H. Voss, C. Fowler, and P.D. Greenberg. 2006. Facilitating matched pairing and expression of TCR-chains introduced into human T-cells. Blood Google Scholar
  79. 79.
    Stanislawski, T., R.H. Voss, C. Lotz, E. Sadovnikova, R.A. Willemsen, J. Kuball, T. Ruppert, R.L. Bolhuis, C.J. Melief, C. Huber, H.J. Stauss, and M. Theobald. 2001. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat Immunol 2:962–970.PubMedCrossRefGoogle Scholar
  80. 80.
    Kershaw, M.H., J.A. Westwood, L.L. Parker, G. Wang, Z. Eshhar, S.A. Mavroukakis, D.E. White, J.R. Wunderlich, S. Canevari, L. Rogers-Freezer, C.C. Chen, J.C. Yang, S.A. Rosenberg, and P. Hwu. 2006. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12:6106–6115.PubMedCrossRefGoogle Scholar
  81. 81.
    Gyobu, H., T. Tsuji, Y. Suzuki, T. Ohkuri, K. Chamoto, M. Kuroki, H. Miyoshi, Y. Kawarada, H. Katoh, T. Takeshima, and T. Nishimura. 2004. Generation and targeting of human tumor-specific Tc1 and Th1 cells transduced with a lentivirus containing a chimeric immunoglobulin T-cell receptor. Cancer Res 64:1490–1495.PubMedCrossRefGoogle Scholar
  82. 82.
    Finney, H.M., A.D. Lawson, C.R. Bebbington, and A.N. Weir. 1998. 1998 receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol 161:2791–2797.PubMedGoogle Scholar
  83. 83.
    Kowolik, C.M., M.S. Topp, S. Gonzalez, T. Pfeiffer, S. Olivares, N. Gonzalez, D.D. Smith, S.J. Forman, M.C. Jensen, and L.J. Cooper. 2006. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res 66:10995–11004.PubMedCrossRefGoogle Scholar
  84. 84.
    North, R.J. 1982. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med 155:1063–1074.PubMedCrossRefGoogle Scholar
  85. 85.
    Greenberg, P.D., M.A. Cheever, and A. Fefer. 1981. Eradication of disseminated murine leukemia by chemoimmunotherapy with cyclophosphamide and adoptively transferred immune syngeneic Lyt-1+2- lymphocytes. Journal of Experimental Medicine 154:952–963.PubMedCrossRefGoogle Scholar
  86. 86.
    Vierboom, M.P., G.M. Bos, M. Ooms, R. Offringa, and C.J. Melief. 2000. Cyclophosphamide enhances anti-tumor effect of wild-type p53-specific CTL. Int J Cancer 87:253–260.PubMedCrossRefGoogle Scholar
  87. 87.
    Proietti, E., G. Greco, B. Garrone, S. Baccarini, C. Mauri, M. Venditti, D. Carlei, and F. Belardelli. 1998. Importance of cyclophosphamide-induced bystander effect on T cells for a successful tumor eradication in response to adoptive immunotherapy in mice. J Clin Invest 101:429–441.PubMedCrossRefGoogle Scholar
  88. 88.
    Ghiringhelli, F., N. Larmonier, E. Schmitt, A. Parcellier, D. Cathelin, C. Garrido, B. Chauffert, E. Solary, B. Bonnotte, and F. Martin. 2004. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344.PubMedCrossRefGoogle Scholar
  89. 89.
    Machiels, J.P., R.T. Reilly, L.A. Emens, A.M. Ercolini, R.Y. Lei, D. Weintraub, F.I. Okoye, and E.M. Jaffee. 2001. Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res 61:3689–3697.PubMedGoogle Scholar
  90. 90.
    Schiavoni, G., F. Mattei, T. Di Pucchio, S.M. Santini, L. Bracci, F. Belardelli, and E. Proietti. 2000. Cyclophosphamide induces type I interferon and augments the number of CD44(hi) T lymphocytes in mice: implications for strategies of chemoimmunotherapy of cancer. Blood 95:2024–2030.PubMedGoogle Scholar
  91. 91.
    Maguire, H.C., Jr., and V.L. Ettore. 1967. Enhancement of dinitrochlorobenzene (DNCB) contact sensitization by cyclophosphamide in the guinea pig. J Invest Dermatol 48:39–43.PubMedGoogle Scholar
  92. 92.
    Lutsiak, M.E., R.T. Semnani, R. De Pascalis, S.V. Kashmiri, J. Schlom, and H. Sabzevari. 2005. Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105:2862–2868.PubMedCrossRefGoogle Scholar
  93. 93.
    Vierboom, M.P.M., H.W. Nijman, R. Offringa, E.I.H. Vandervoort, T. Vanhall, L. Vandenbroek, G.J. Fleuren, P. Kenemans, W.M. Kast, and C.J.M. Melief. 1997. Tumor Eradication By Wild-Type P53-Specific Cytotoxic T Lymphocytes. Journal of Experimental Medicine 186:695–704.PubMedCrossRefGoogle Scholar
  94. 94.
    Berd, D., M.J. Mastrangelo, P.F. Engstrom, A. Paul, and H. Maguire. 1982. Augmentation of the human immune response by cyclophosphamide. Cancer Res 42:4862–4866.PubMedGoogle Scholar
  95. 95.
    Berd, D., and M.J. Mastrangelo. 1987. Effect of low dose cyclophosphamide on the immune system of cancer patients: reduction of T-suppressor function without depletion of the CD8+ subset. Cancer Res 47:3317–3321.PubMedGoogle Scholar
  96. 96.
    Bast, R.C., Jr., E.L. Reinherz, C. Maver, P. Lavin, and S.F. Schlossman. 1983. Contrasting effects of cyclophosphamide and prednisolone on the phenotype of human peripheral blood leukocytes. Clin Immunol Immunopathol 28:101–114.PubMedCrossRefGoogle Scholar
  97. 97.
    Berd, D., H.C. Maguire, Jr., and M.J. Mastrangelo. 1984. 1984 of human cell-mediated and humoral immunity by low-dose cyclophosphamide. Cancer Res 44:5439–5443.PubMedGoogle Scholar
  98. 98.
    Goldrath, A.W., P.V. Sivakumar, M. Glaccum, M.K. Kennedy, M.J. Bevan, C. Benoist, D. Mathis, and E.A. Butz. 2002. Cytokine requirements for acute and Basal homeostatic proliferation of naive and memory CD8+ T cells. J Exp Med 195:1515–1522.PubMedCrossRefGoogle Scholar
  99. 99.
    Brown, I.E., C. Blank, J. Kline, A.K. Kacha, and T.F. Gajewski. 2006. Homeostatic proliferation as an isolated variable reverses CD8+ T cell anergy and promotes tumor rejection. J Immunol 177:4521–4529.PubMedGoogle Scholar
  100. 100.
    Teague, R.M., B.D. Sather, J.A. Sacks, M.Z. Huang, M.L. Dossett, J. Morimoto, X. Tan, S.E. Sutton, M.P. Cooke, C. Ohlen, and P.D. Greenberg. 2006. Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors. Nat Med 12:335–341.PubMedCrossRefGoogle Scholar
  101. 101.
    Wang, L.X., R. Li, G. Yang, M. Lim, A. O’Hara, Y. Chu, B.A. Fox, N.P. Restifo, W.J. Urba, and H.M. Hu. 2005. Interleukin-7-dependent expansion and persistence of melanoma-specific T cells in lymphodepleted mice lead to tumor regression and editing. Cancer Res 65:10569–10577.PubMedCrossRefGoogle Scholar
  102. 102.
    Cesana, G.C., G. DeRaffele, S. Cohen, D. Moroziewicz, J. Mitcham, J. Stoutenburg, K. Cheung, C. Hesdorffer, S. Kim-Schulze, and H.L. Kaufman. 2006. Characterization of CD4+CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol 24:1169–1177.PubMedCrossRefGoogle Scholar
  103. 103.
    Phan, G.Q., J.C. Yang, R.M. Sherry, P. Hwu, S.L. Topalian, D.J. Schwartzentruber, N.P. Restifo, L.R. Haworth, C.A. Seipp, L.J. Freezer, K.E. Morton, S.A. Mavroukakis, P.H. Duray, S.M. Steinberg, J.P. Allison, T.A. Davis, and S.A. Rosenberg. 2003. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A 100:8372–8377.PubMedCrossRefGoogle Scholar
  104. 104.
    Hodi, F.S., M.C. Mihm, R.J. Soiffer, F.G. Haluska, M. Butler, M.V. Seiden, T. Davis, R. Henry-Spires, S. MacRae, A. Willman, R. Padera, M.T. Jaklitsch, S. Shankar, T.C. Chen, A. Korman, J.P. Allison, and G. Dranoff. 2003. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci U S A 100:4712–4717.PubMedCrossRefGoogle Scholar
  105. 105.
    Kortylewski, M., M. Kujawski, T. Wang, S. Wei, S. Zhang, S. Pilon-Thomas, G. Niu, H. Kay, J. Mule, W.G. Kerr, R. Jove, D. Pardoll, and H. Yu. 2005. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11:1314–1321.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Cassian Yee
    • 1
  1. 1.Program in Immunology Clinical Research Division Fred Hutchinson Cancer Research CenterUniversity of WashingtonSeattle

Personalised recommendations