Advertisement

Monoclonal Antibody Therapy of Cancer

  • Joseph G. Jurcic
  • Deborah A. Mulford
  • David A. Scheinberg

Keywords

Acute Myeloid Leukemia Clin Oncol Chronic Lymphocytic Leukemia Gemtuzumab Ozogamicin Monoclonal Antibody Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256:495–497.PubMedCrossRefGoogle Scholar
  2. 2.
    Burrows PD, Cooper MD. B-cell development in man. Curr Opin Immunol 1993; 5:201–206.PubMedCrossRefGoogle Scholar
  3. 3.
    Petersen JG, Dorrington KJ. An in vitro system for studying the kinetics of interchain disulfide bond formation in immunoglobulin G. J Biol Chem 1974; 249:5633–5641.PubMedGoogle Scholar
  4. 4.
    Welling GW, Geurts T, van Gorkum J, et al. Synthetic antibody fragment as ligand in immunoaffinity chromatography. J Chromatogr 1990; 512:337–343.PubMedCrossRefGoogle Scholar
  5. 5.
    Segal DM, Wunderlich JR. Targeting of cytotoxic cells with heterocrosslinked antibodies. Cancer Invest 1988; 6:83–92.PubMedGoogle Scholar
  6. 6.
    Meeker TC, Lowder J, Maloney DG, et al. A clinical trial of anti-idiotype therapy for B cell malignancy. Blood 1985; 65:1349–1363.PubMedGoogle Scholar
  7. 7.
    Senter PD. Activation of prodrugs by antibody-enzyme conjugates: a new approach to cancer therapy. FASEB J 1990; 4:188–193.PubMedGoogle Scholar
  8. 8.
    Yuan F, Baxter LT, Jain RK. Pharmacokinetic analysis of two-step approaches using bifunctional and enzyme-conjugated antibodies. Cancer Res 1991; 51:3119–3130.PubMedGoogle Scholar
  9. 9.
    Pastan I, FitzGerald D. Recombinant toxins for cancer treatment. Science 1991; 254:1173–1177.PubMedCrossRefGoogle Scholar
  10. 10.
    Kreitman RJ, Wilson WH, Bergeron K, et al. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N Engl J Med 2001; 345:241–247.PubMedCrossRefGoogle Scholar
  11. 11.
    Grossbard ML, Lambert JM, Goldmacher VS, et al. Anti-B4-blocked ricin: a phase I trial of 7-day continuous infusion in patients with B-cell neoplasms. J Clin Oncol 1993; 11:726–737.PubMedGoogle Scholar
  12. 12.
    Duzkale H, Pagliaro LC, Rosenblum MG, et al. Bone marrow purging studies in acute myelogenous leukemia using the recombinant anti-CD33 immunotoxin HuM195/rGel. Biol Blood Marrow Transplant 2003; 9:364–372.PubMedCrossRefGoogle Scholar
  13. 13.
    Talpaz M, Kantarjian H, Freireich E, et al. Phase I clinical trial of the anti-CD33-immunotoxin HuM195/rGel. Proc Am Assoc Cancer Res 2003; 44:1228.Google Scholar
  14. 14.
    Scheinberg DA, Straus DJ, Yeh SD, et al. A phase I toxicity, pharmacology, and dosimetry trial of monoclonal antibody OKB7 in patients with non-Hodgkin’s lymphoma: effects of tumor burden and antigen expression. J Clin Oncol 1990; 8:792–803.PubMedGoogle Scholar
  15. 15.
    Press OW, Eary JF, Appelbaum FR, et al. Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N Engl J Med 1993; 329:1219–1224.PubMedCrossRefGoogle Scholar
  16. 16.
    Williams LE, Duda RB, Proffitt RT, et al. Tumor uptake as a function of tumor mass: a mathematic model. J Nucl Med 1988; 29:103–109.PubMedGoogle Scholar
  17. 17.
    Fujimori K, Covell DG, Fletcher JE, et al. A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J Nucl Med 1990; 31:1191–1198.PubMedGoogle Scholar
  18. 18.
    Juweid M, Neumann R, Paik C, et al. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res 1992; 52:5144–5153.PubMedGoogle Scholar
  19. 19.
    Scheinberg DA, Lovett D, Divgi CR, et al. A phase I trial of monoclonal antibody M195 in acute myelogenous leukemia: specific bone marrow targeting and internalization of radionuclide. J Clin Oncol, 1991;9(3):478–90.PubMedGoogle Scholar
  20. 20.
    Appelbaum FR, Matthews DC, Eary JF, et al. The use of radiolabeled anti-CD33 antibody to augment marrow irradiation prior to marrow transplantation for acute myelogenous leukemia. Transplantation 1992; 54:829–833.PubMedCrossRefGoogle Scholar
  21. 21.
    Kaminski MS, Zasadny KR, Francis IR, et al. Radioimmunotherapy of B-cell lymphoma with [131I]anti-B1 (anti-CD20) antibody. N Engl J Med 1993; 329:459–465.PubMedCrossRefGoogle Scholar
  22. 22.
    Caron PC, Co MS, Bull MK, et al. Biological and immunological features of humanized M195 (anti-CD33) monoclonal antibodies. Cancer Res, 1992;52(24):6761–7.PubMedGoogle Scholar
  23. 23.
    Riechmann L, Clark M, Waldmann H, et al. Reshaping human antibodies for therapy. Nature, 1988;332(6162):323–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Carter P, Presta L, Gorman CM, et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A, 1992;89(10):4285–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Gram H, Marconi LA, Barbas CF, 3rd, et al. In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proc Natl Acad Sci U S A, 1992;89(8):3576–80.PubMedCrossRefGoogle Scholar
  26. 26.
    Junghans RP. Finally! The Brambell receptor (FcRB). Mediator of transmission of immunity and protection from catabolism for IgG. Immunol Res 1997;16(1):29–57.PubMedGoogle Scholar
  27. 27.
    Green LL, Hardy MC, Maynard-Currie CE, et al. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet, 1994;7(1):13–21.PubMedCrossRefGoogle Scholar
  28. 28.
    Ishida I, Tomizuka K, Yoshida H, et al. Production of human monoclonal and polyclonal antibodies in TransChromo animals. Cloning Stem Cells, 2002;4(1):91–102.PubMedCrossRefGoogle Scholar
  29. 29.
    Nikula TK, Bocchia M, Curcio MJ, et al. Impact of the high tyrosine fraction in complementarity determining regions: measured and predicted effects of radioiodination on IgG immunoreactivity. Mol Immunol 1995; 32:865–872.PubMedCrossRefGoogle Scholar
  30. 30.
    Jurcic JG, Divgi CR, McDevitt MR, et al. Potential for myeloablation with Yttrium-90-HuM195 (anti-CD33) in myeloid leukemia. Proc Am Soc Clin Oncol, 2000: 19:8a.Google Scholar
  31. 31.
    Scheinberg DA, Strand M. Kinetic and catabolic considerations of monoclonal antibody targeting in erythroleukemic mice. Cancer Res 1983; 43:265–272.PubMedGoogle Scholar
  32. 32.
    Lovqvist A, Humm JL, Sheikh A, et al. PET imaging of 86Y-labeled anti-Lewis Y monoclonal antibodies in a nude mouse model: comparison between 86Y and 111In radiolabels. J Nucl Med 2001; 42:1281–1287.PubMedGoogle Scholar
  33. 33.
    McDevitt MR, Sgouros G, Finn RD, et al. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med 1998; 25:1341–1351.PubMedCrossRefGoogle Scholar
  34. 34.
    Jurcic JG, Larson SM, Sgouros G, et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood 2002; 100:1233–1239.PubMedGoogle Scholar
  35. 35.
    Mulford DA, Pandit-Taskar N, McDevitt MR, et al. Sequential therapy with cytarabine and bismuth-213 (213Bi)-labeled HuM195 (anti-CD33) for acute myeloid leukemia (AML). Blood 2004; 104:496a.Google Scholar
  36. 36.
    Zalutsky MR, Narula AS. Astatination of proteins using an N-succinimidyl tri-n-butylstannyl benzoate intermediate. Int J Rad Appl Instrum [A] 1988; 39:227–232.CrossRefGoogle Scholar
  37. 37.
    Zalutksy M, Reardon D, Akabani G, et al. Astatine-211 labeled human/mouse chimeric anti-tenascin monoclonal antibody via surgically created resection davities for patients with recurrent glioma: phase I study. Neuro-oncol 2202; 4(suppl):S103.Google Scholar
  38. 38.
    McDevitt MR, Ma D, Lai LT, et al. Tumor therapy with targeted atomic nanogenerators. Science 2001; 294:1537–1540.PubMedCrossRefGoogle Scholar
  39. 39.
    Sgouros G. Dosimetry of internal emitters. J Nucl Med 2005; 46:18S-27S.PubMedGoogle Scholar
  40. 40.
    Humm JL, Roeske JC, Fisher DR, Chen GTY. Microdosimetric concepts in radioimmunotherapy. Med Phys 1993; 20:535–543.PubMedCrossRefGoogle Scholar
  41. 41.
    Axworthy DB, Reno JM, Hylarides MD, et al. Cure of human carcinoma xenografts by a single dose of pretargeted yttrium-90 with negligible toxicity. Proc Natl Acad Sci USA 2000; 97:1802–1807.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang M, Zhang Z, Garmestani K, et al. Pretargeting radioimmunotherapy of a murine model of adult T-cell leukemia with the α-emitting radionuclide, bismuth 213. Blood 2002; 100:208–216.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang M, Zhang Z, Garmestani K, et al. Pretarget radiotherapy with an anti-CD25 antibody-streptavidin fusion protein was effective in therapy of leukemia/lymphoma xenografts. Proc Natl Acad Sci USA 2003; 100:1891–1895.PubMedCrossRefGoogle Scholar
  44. 44.
    Forero A, Weiden PL, Vose JM, et al. Phase 1 trial of a novel anti-CD20 fusion protein in pretargeted radioimmunotherapy for B-cell non-Hodgkin lymphoma. Blood 2004; 104:227–236.PubMedCrossRefGoogle Scholar
  45. 45.
    Shen S, Forero A, LoBulgio AF, et al. Patient-specific dosimetry of pretargeted radioimmunotherapy using CC49 fusion protein in patients with gastrointestinal malignancies. J Nucl Med 2005; 46:642–651.PubMedGoogle Scholar
  46. 46.
    McLaughlin P, Grillo-Lopez AJ, Link BK, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 1998; 16:2825–2833.PubMedGoogle Scholar
  47. 47.
    Hainsworth JD, Litchy S, Shaffer DW, et al. Maximizing therapeutic benefit of rituximab: maintenance therapy versus re-treatment at progression in patients with indolent non-Hodgkin’s lymphoma—a randomized phase II trial of the Minnie Pearl Cancer Research Network. J Clin Oncol 2005; 23:1088–1095.PubMedCrossRefGoogle Scholar
  48. 48.
    Czuczman MS, Grillo-Lopez AJ, White CA, et al. Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody and CHOP chemotherapy. J Clin Oncol 1999; 17:268–276.PubMedGoogle Scholar
  49. 49.
    Marcus R, Imrie K, Belch A, et al. An international multi-centre, randomized, open-label, phase III trial comparing rituximab added to CVP chemotherapy to CVP chemotherapy alone in untreated stage III/IV follicular non-Hodgkin’s lymphoma. Blood 2003; 102:28a.Google Scholar
  50. 50.
    Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002; 346:235–242.PubMedCrossRefGoogle Scholar
  51. 51.
    Coiffier B, Herbrecht R, Tilly H, et al. GELA study comparing CHOP and R-CHOP in elderly patients with DLCL: 3-year median follow-up with an analysis according to co-morbidity factors. Proc Am Soc Clin Oncol, 2003; 22:596.Google Scholar
  52. 52.
    Habermann T, Weller E, Morrison V. Phase III trial of rituximab-CHOP (R-CHOP) vs. CHOP with a second randomization to maintenance rituximab (MR) or observation in patients 60 years of age and older with diffuse large B-cell lymphoma (DLBCL). Blood 2003; 102:6a.Google Scholar
  53. 53.
    Foran JM, Rohatiner AZ, Cunningham D, et al. European phase II study of rituximab (chimeric anti-CD20 monoclonal antibody) for patients with newly diagnosed mantle-cell lymphoma and previously treated mantle-cell lymphoma, immunocytoma, and small B-cell lymphocytic lymphoma. J Clin Oncol 2000; 18:317–324.PubMedGoogle Scholar
  54. 54.
    Berinstein NL, Grillo-Lopez AJ, White CA, et al. Association of serum Rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol 1998; 9:995–1001.PubMedCrossRefGoogle Scholar
  55. 55.
    Nguyen DT, Amess JA, Doughty H, et al. IDEC-C2B8 anti-CD20 (rituximab) immunotherapy in patients with low-grade non-Hodgkin’s lymphoma and lymphoproliferative disorders: evaluation of response on 48 patients. Eur J Haematol 1999; 62:76–82.PubMedCrossRefGoogle Scholar
  56. 56.
    Byrd JC, Murphy T, Howard RS, et al. Rituximab using a thrice weekly dosing schedule in B-cell chronic lymphocytic leukemia and small lymphocytic lymphoma demonstrates clinical activity and acceptable toxicity. J Clin Oncol 2001; 19:2153–2164.PubMedGoogle Scholar
  57. 57.
    O’Brien SM, Kantarjian H, Thomas DA, et al. Rituximab dose-escalation trial in chronic lymphocytic leukemia. J Clin Oncol 2001; 19:2165–2170.PubMedGoogle Scholar
  58. 58.
    Wierda W, O’Brien SM, Faderl S, et al. Improved survival in patients with relapsed- refractory chronic lymphocytic leukemia (CLL) treated with fludarabine, cyclophosphamide, and rituximab (FCR) combination. Blood 2003; 102:110a.Google Scholar
  59. 59.
    Weiss M, Lamanna N, Jurcic J, et al. Pentostatin, cyclophosphamide, and rituximab (PCR therapy): a new active regimen for previously treated patients with chronic lymphocytic leukemia (CLL). Blood 2003; 102:673a.CrossRefGoogle Scholar
  60. 60.
    Hale G, Dyer MJ, Clark MR, et al. Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody CAMPATH-1H. Lancet 1988; 2:1394–1399.PubMedCrossRefGoogle Scholar
  61. 61.
    Keating MJ, Flinn I, Jain V, et al. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood 2002; 99:3554–3561.PubMedCrossRefGoogle Scholar
  62. 62.
    Lundin J, Kimby E, Bjorkholm M, et al. Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood 2002; 100:768–773.PubMedCrossRefGoogle Scholar
  63. 63.
    Wierda W, Faderl S, O’Brien S, et al. Combined cyclophosphamide, fludarabine, alemtuzumab, and rituximab (CFAR) is active for relapsed and refractory patients with CLL. Blood 2004; 104:101a.Google Scholar
  64. 64.
    Keating MJ, Cazin B, Coutre S, et al. Campath-1H treatment of T-cell prolymphocytic leukemia in patients for whom at least one prior chemotherapy regimen has failed. J Clin Oncol 2002; 20:205–213.PubMedCrossRefGoogle Scholar
  65. 65.
    Dearden CE, Matutes E, Cazin B, et al. High remission rate in T-cell prolymphocytic leukemia with CAMPATH-1H. Blood 2001; 98:1721–1726.PubMedCrossRefGoogle Scholar
  66. 66.
    Morris E, Thomson K, Craddock C, et al. Outcomes after alemtuzumab-containing reduced-intensity allogeneic transplantation regimen for relapsed and refractory non-Hodgkin lymphoma. Blood 2004; 104:3865–3871.PubMedCrossRefGoogle Scholar
  67. 67.
    Chakrabarti S, MacDonald D, Hale G, et al. T-cell depletion with Campath-1H ‘in the bag’ for matched related allogeneic peripheral blood stem cell transplantation is associated with reduced graft-versus-host disease, rapid immune constitution and improved survival. Br J Haemat 2003; 121:109–118.CrossRefGoogle Scholar
  68. 68.
    Nahta R, Esteva FJ. HER-2-targeted therapy: lessons learned and future directions. Clin Cancer Res 2003; 9:5078–5084.PubMedGoogle Scholar
  69. 69.
    Baselga J, Tripathy D, Mendelsohn J, et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 1996; 14:737–744.PubMedGoogle Scholar
  70. 70.
    Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 17:2639–2648.PubMedGoogle Scholar
  71. 71.
    Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344:783–792.PubMedCrossRefGoogle Scholar
  72. 72.
    Esteva FJ, Valero V, Booser D, et al. Phase II study of weekly docetaxel and trastuzumab for patients with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20:1800–1808.PubMedCrossRefGoogle Scholar
  73. 73.
    Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350:2335–2342.PubMedCrossRefGoogle Scholar
  74. 74.
    Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 2003; 349:427–434.PubMedCrossRefGoogle Scholar
  75. 75.
    Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004; 351:337–345.PubMedCrossRefGoogle Scholar
  76. 76.
    Saltz LB, Meropol NJ, Loehrer PJ Sr, et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 2004; 22:1201–1208.PubMedCrossRefGoogle Scholar
  77. 77.
    Baselga J, Trigo J, Bouthis J. Cetuximab (C225) plus cisplatin/carboplatin is active in patients with recurrent/metastatic squamous-cell carcinoma of the head and neck progressing on a same dose and schedule platinum-based regimen. Proc Am Soc Clin Oncol 2002; 21:226a.Google Scholar
  78. 78.
    Burtness BA, Li Y, Flood W, et al. Phase III trial comparing cisplatin (C) + placebo to C + anti-epidermal growth factor antibody (EGF-R) C225 in patients with metastatic/recurrent head & neck cancer (HNC). Proc Am Soc Clin Oncol 2002; 21:226a.Google Scholar
  79. 79.
    Sievers EL, Appelbaum FR, Spielberger RT, et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 1999; 93:3678–3684.PubMedGoogle Scholar
  80. 80.
    Sievers EL, Larson RA, Staudtmauer EA, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 2001; 19:3244–3254.PubMedGoogle Scholar
  81. 81.
    Adadori S, Suciu Willemze R, et al. Sequential administration of gemtuzumab ozogamcin and convential chemotherapy as first line therapy in elderly patients with acute myeloid leukemia: a phase II study (AML-15) of the EORTC and GIMEMA leukemia groups. Hematologica 2004; 89:950–956.Google Scholar
  82. 82.
    Sievers E, Larson R, Estey E, et al. Final report of prolonged disease-free survival in patients with acute myeloid leukemia in first relapse treated with gemtuzumab ozogamicin followed by hematpoietic stem cell transplantation. Blood 2002; 100:89a.CrossRefGoogle Scholar
  83. 83.
    Rajvanshi P, Schulman H, Sievers E, et al. Hepatic sinusoidal obstruction after gemtuzumab ozogamicin (Mylotarg) therapy. Blood 2002; 99:10–14.CrossRefGoogle Scholar
  84. 84.
    Giles FJ, Kantarjian HM, Kornblau SM, et al. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer 2001; 92:406–413.PubMedCrossRefGoogle Scholar
  85. 85.
    Kell WJ, Burnett AK, Chopra R, et al. A feasibility study of simultaneous administration of gemtuzumab ozogamicin with intensive chemotherapy in induction and consolidation in younger patients with acute myeloid leukemia. Blood 2003; 102:4277–4283.PubMedCrossRefGoogle Scholar
  86. 86.
    Estey E, Giles FJ, Beran M, et al. Experience with gemtuzumab ozogamicin (“Mylotarg”) and all-trans retinoic acid in untreated acute promyelocytic leukemia. Blood 2002; 99:4222–4224.PubMedCrossRefGoogle Scholar
  87. 87.
    Schwartz MA, Lovett DR, Redner A, et al. Dose-escalation trial of M195 labeled with iodine 131 for cytoreduction and marrow ablation in relapsed or refractory myeloid leukemias. J Clin Oncol 11:294–303.Google Scholar
  88. 88.
    Burke JM, Caron PC, Papadopoulos EB, et al. Cytoreduction with iodine-131-anti-CD33 antibodies before bone marrow transplantation for advance myeloid leukemias. Bone Marrow Transplant 2003; 32:549–556.PubMedCrossRefGoogle Scholar
  89. 89.
    Matthews DC, Appelbaum FR, Eary JF, et al. Phase I study of (131)I-anti-CD45 antibody plus cyclophosphamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood 1999; 94:1237–1247.PubMedGoogle Scholar
  90. 90.
    Pagel JM, Appelbaum FR, Eary JF, et al. 131I-anti-CD45 antibody plus busulfan/cyclophosphamide in matched related transplants for acute myeloid leukemia in first remission. Blood 2004; 104:232a.Google Scholar
  91. 91.
    Bunjes D. 188Re-labeled anti-CD66 monoclonal antibody in stem cell transplantation for patients with high-risk acute myeloid leukemia. Leuk Lymph 2002; 43:2125–2131.CrossRefGoogle Scholar
  92. 92.
    Kaminski MS, Zelenetz AD, Press OW, et al. Pivotal study of iodine I 131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol 2001; 19:3918–3928.PubMedGoogle Scholar
  93. 93.
    Kaminski MS, Tuck M,m Estes J, et al. 131I tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med 2005; 352:441–449.PubMedCrossRefGoogle Scholar
  94. 94.
    Press OW, Unger JM, Braziel RM, et al. A phase 2 trial of CHOP chemotherapy followed by tositumomab/iodine I 131 tositomomab for previously untreated follicular non-Hodgkin’s lymphoma: Southwest Oncology Group protocol S9911.Google Scholar
  95. 95.
    Liu SY, Eary JF, Petersdorf SH, et al. Follow-up of relapsed B-cell lymphoma patients treated with iodine-131-labeled anti-CD20 antibody and autologous stem-cell rescue. J Clin Oncol 1998; 16:3270–3278.PubMedGoogle Scholar
  96. 96.
    Press OW, Eary JF, Gooley T, et al. A phase I/II trial of iodine-131-tositumomab (anti-CD20), etoposide, cyclophosphamide, and autologous stem cell transplantation for relapsed B-cell lymphomas. Blood 2000; 96:2934–2942.PubMedGoogle Scholar
  97. 97.
    Gopal AK, Rajendran JG, Petersdorf SH, et al. High-dose chemo-radioimmunotherapy with autologous stem cell support for relapsed mantle cell lymphoma. Blood 2002; 99:3158–3162.PubMedCrossRefGoogle Scholar
  98. 98.
    Gordon LI, Molina A, Witzig T, et al. Durable responses after ibritumomab tiuxetan radioimmunotherapy for CD20+ B-cell lymphoma: long-term follow-up of a phase 1/2 study. Blood 2004; 103:4429–4431.PubMedCrossRefGoogle Scholar
  99. 99.
    Witzig TE, Gordon LI, Cabanillas F, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol 2002; 20:2453–2463.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Joseph G. Jurcic
    • 1
  • Deborah A. Mulford
    • 1
  • David A. Scheinberg
    • 1
  1. 1.Memorial Sloan-Kettering Cancer CenterWeill Medical College of Cornell UniversityNew York

Personalised recommendations