Advertisement

Carbohydrate Vaccines Against Cancer

  • Philip O. Livingston
  • Govind Ragupathi

Keywords

polyvalent cancer vaccine antibody conjugate ganglioside mucin adjuvant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Ragupathi and P.O. Livingston. Antibody-inducing cancer vaccines against cell-surface carbohydrate antigens. 11: p. 137–155, (2003).Google Scholar
  2. 2.
    T. Feizi. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature. 314(6006): p. 53–7, (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    S. Hakomori. Tumor-associated carbohydrate antigens. Annu Rev Immunol. 2: p. 103–26, (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    K.O. Lloyd, Molecular characteristic of tumor antigens. Vol. 10. 1990. 765–779.Google Scholar
  5. 5.
    P. Brossart, U. Keilholz, M. Willhauck, C. Scheibenbogen, T. Mohler, and W. Hunstein. Hematogenous spread of malignant melanoma cells in different stages of disease. J Invest Dermatol. 101(6): p. 887–9, (1993).PubMedCrossRefGoogle Scholar
  6. 6.
    R.A. Ghossein, H.I. Scher, W.L. Gerald, W.K. Kelly, T. Curley, A. Amsterdam, Z.F. Zhang, and J. Rosai. Detection of circulating tumor cells in patients with localized and metastatic prostatic carcinoma: clinical implications. J Clin Oncol. 13(5): p. 1195–200, (1995).PubMedGoogle Scholar
  7. 7.
    D.S. Hoon, Y. Wang, P.S. Dale, A.J. Conrad, P. Schmid, D. Garrison, C. Kuo, L.J. Foshag, A.J. Nizze, and D.L. Morton. Detection of occult melanoma cells in blood with a multiple-marker polymerase chain reaction assay. J Clin Oncol. 13(8): p. 2109–16, (1995).PubMedGoogle Scholar
  8. 8.
    P. Livingston, The case for melanoma vaccines that induce antibodies. Kirkwood JM ed. Molecular Diagnosis Prevention and Treatment of Melanoma ed. 1998: Marcel Dekker, Inc. 139–157.Google Scholar
  9. 9.
    H. Zhang, S. Zhang, N.K. Cheung, G. Ragupathi, and P.O. Livingston. Antibodies against GD2 ganglioside can eradicate syngeneic cancer micrometastases. Cancer Res. 58(13): p. 2844–9, (1998).PubMedGoogle Scholar
  10. 10.
    P.Y. Fung, M. Madej, R.R. Koganty, and B.M. Longenecker. Active specific immunotherapy of a murine mammary adenocarcinoma using a synthetic tumor-associated glycoconjugate. Cancer Res. 50(14): p. 4308–14, (1990).PubMedGoogle Scholar
  11. 11.
    P.C. Jones, L.L. Sze, P.Y. Liu, D.L. Morton, and R.F. Irie. Prolonged survival for melanoma patients with elevated IgM antibody to oncofetal antigen. J Natl Cancer Inst. 66(2): p. 249–54, (1981).PubMedGoogle Scholar
  12. 12.
    P.O. Livingston, G. Ritter, P. Srivastava, M. Padavan, M.J. Calves, H.F. Oettgen, and L.J. Old. Characterization of IgG and IgM antibodies induced in melanoma patients by immunization with purified GM2 ganglioside. Cancer Res. 49(24 Pt 1): p. 7045–50, (1989).PubMedGoogle Scholar
  13. 13.
    P.O. Livingston, G.Y. Wong, S. Adluri, Y. Tao, M. Padavan, R. Parente, C. Hanlon, M.J. Calves, F. Helling, G. Ritter, and et al. Improved survival in stage III melanoma patients with GM2 antibodies: a randomized trial of adjuvant vaccination with GM2 ganglioside. J Clin Oncol. 12(5): p. 1036–44, (1994).PubMedGoogle Scholar
  14. 14.
    G.D. MacLean, M.A. Reddish, R.R. Koganty, and B.M. Longenecker. Antibodies against mucin-associated sialyl-Tn epitopes correlate with survival of metastatic adenocarcinoma patients undergoing active specific immunotherapy with synthetic STn vaccine. J Immunother Emphasis Tumor Immunol. 19(1): p. 59–68, (1996).PubMedGoogle Scholar
  15. 15.
    G.F. Springer. Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J Mol Med. 75(8): p. 594–602, (1997).PubMedCrossRefGoogle Scholar
  16. 16.
    J. Dalmau, H.S. Gultekin, and J.B. Posner. Paraneoplastic neurologic syndromes: pathogenesis and physiopathology. Brain Pathol. 9(2): p. 275–84, (1999).PubMedCrossRefGoogle Scholar
  17. 17.
    G. Ragupathi, N.X. Liu, S. Cappello, C. Musselli, and P.O. Livingston. Complement activation by antibodies against cancer cell surface glycolipids and proteins, but not mucins, results in cell lysis. J Immunol. (2005).Google Scholar
  18. 18.
    H.R. Colten and F.S. Rosen. Complement deficiencies. Annu Rev Immunol. 10: p. 809–34, (1992).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Zhang, C. Cordon-Cardo, H.S. Zhang, V.E. Reuter, S. Adluri, W.B. Hamilton, K.O. Lloyd, and P.O. Livingston. Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides. Int J Cancer. 73(1): p. 42–9, (1997).PubMedCrossRefGoogle Scholar
  20. 20.
    S. Zhang, H.S. Zhang, C. Cordon-Cardo, V.E. Reuter, A.K. Singhal, K.O. Lloyd, and P.O. Livingston. Selection of tumor antigens as targets for immune attack using immunohistochemistry. II. Blood group-related antigens. Int. J. Cancer. 73: p. 50–56, (1997).PubMedCrossRefGoogle Scholar
  21. 21.
    S. Zhang, H.S. Zhang, C. Cordon-Cardo, G. Ragupathi, and P.O. Livingston. Selection of tumor antigens as targets for immune attack using immunohistochemistry: III protein antigens. Clin. Cancer Res. 4: p. 2669–2676, (1998).PubMedGoogle Scholar
  22. 22.
    S. Zhang, H.S. Zhang, V.E. Reuter, K.O. Lloyd, H. Scher, and P.O. Livingston. Expression of potential target antigens for immunotherapy on primary and metastatic prostate cancers. Clin Cancer Res. 4: p. 295–302, (1998).PubMedGoogle Scholar
  23. 23.
    K. Nakamura, M. Koike, K. Shitara, Y. Kuwana, K. Kiuragi, S. Igarashi, M. Hasegawa, and N. Hanai. Chimeric anti-ganglioside GM2 antibody with antitumor activity. Cancer Res. 54: p. 1511–1516, (1994.).PubMedGoogle Scholar
  24. 24.
    Y. Nishinaka, M.N.H. Ravindranath, and R.F. Ire. Development of a human monoclonal antibody to ganglioside GM2 with potential for cancer treatment. Cancer Res. 56: p. 5666–5671, (1996).PubMedGoogle Scholar
  25. 25.
    S. Canevari, G. Fossati, A. Balsari, S. Sonnino, and M.I. Colnaghi. Immunochemical analysis of the determinant recognized by a monoclonal antibody (MBr1) which specifically binds to human mammary epithelial cells. Cancer Res. 43(3): p. 1301–5, (1983).PubMedGoogle Scholar
  26. 26.
    I. Hellström, H.J. Garrigues, U. Garrigues, and K.E. Hellström. Highly tumor-reactive, internalizing, mouse monoclonal antibodies to Ley-related cell surface antigens. Cancer Res. 50: p. 2183–2190, (1990).PubMedGoogle Scholar
  27. 27.
    S. Menard, E. Tagliabue, S. Canevari, G. Fossati, and M.I. Colnaghi. Generation of monoclonal antibodies reacting with normal and cancer cells of human breast. Cancer Res. 43(3): p. 1295–300, (1983).PubMedGoogle Scholar
  28. 28.
    F. Perrone, S. Menard, S. Canevari, M. Calabrese, P. Boracchi, R. Bufalino, S. Testori, M. Baldini, and M.I. Colnaghi. Prognostic significance of the CaMBr1 antigen on breast carcinoma: relevance of the type of recognised glycoconjugate. Eur J Cancer. 29A(15): p. 2113–7, (1993).PubMedCrossRefGoogle Scholar
  29. 29.
    M.I. Colnaghi, S. Menard, J.G. Da Dalt, R. Agresti, G. Cattoretti, S. Andreola, G. Di Fronzo, M. Del Vecchio, L. Verderio, N. Cascinelli, and F. Rilke. A multiparametric study by monoclonal antibodies in breast cancer., (1987).Google Scholar
  30. 30.
    P.A. Trail, D. Willner, S.J. Lasch, A.J. Henderson, S. Hofstead, A.M. Casazza, R.A. Firestone, I. Hellstrom, and K.E. Hellstrom. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science. 261(5118): p. 212–5, (1993).PubMedCrossRefGoogle Scholar
  31. 31.
    S.J. Gendler, A.P. Spicer, E.-N. Lalani, T. Duhig, N. Peat, J. Burchell, L. Pemberton, M. Boshell, and J. Taylor-Papadimitriou. Structure and biology of a carcinoma-associated mucin, MUC1. Am. Rev. Respir. Dis. 144: p. S42-S47, (1991).PubMedGoogle Scholar
  32. 32.
    L. Perez, D.F. Hayes, P. Maimonis, M. Abe, C. O’Hara, and D.W. Kufe. Tumor selective reactivity of a monoclonal antibody prepared against a recombinant peptide derived from the DF3 human breast carcinoma-associated antigen. Cancer Res. 52: p. 2563–2568, (1992).Google Scholar
  33. 33.
    K.O. Lloyd. Blood group antigens as markers for normal differentiation and malignant change in human tissues. Amer. J. Clin. Pathol. 87: p. 129–139, (1987).Google Scholar
  34. 34.
    G.F. Springer. T and Tn, general carcinoma autoantigens. Science. 224: p. 1198–1206, (1984).PubMedCrossRefGoogle Scholar
  35. 35.
    S.-H. Cho, A. Sahin, G.N. Hortobagyi, W.N. Hittelman, and K. Dhingra. Sialyl-Tn antigen expression occurs early during human mammary carcinogenesis and is associated with high nuclear grade and aneuploidy. Cancer Res. 54: p. 6302–6305, (1994).PubMedGoogle Scholar
  36. 36.
    S. Itzkowitz, E.J. Bloom, W.A. Kokal, G. Modin, S.-I. Hakomori, and Y.S. Kim. Sialosyl Tn: A novel mucin antigen associated with prognosis in colorectal carcinoma patients. Cancer. 66: p. 1960–1966, (1990).PubMedCrossRefGoogle Scholar
  37. 37.
    A. Thor, N. Ohuchi, C.A. Szpak, W.W. Johnston, and J. Schlom. Distribution of oncofetal antigen tumor-associated glycoprotein-72 defined by monoclonal antibody B72.3. Cancer Res. 46(6): p. 3118–24, (1986).PubMedGoogle Scholar
  38. 38.
    A. Contegiacomo, M. Alimandi, R. Muraro, C. Pizzi, R. Calderopoli, L. De Marchis, A. Sgambato, G. Pettinato, G. Petrella, M.R. De Filippo, and et al. Expression of epitopes of the tumour-associated glycoprotein 72 and clinicopathological correlations in mammary carcinomas. Eur J Cancer. 30A(6): p. 813–20, (1994).PubMedCrossRefGoogle Scholar
  39. 39.
    B.M. Longenecker, D.J. Willans, G.D. MacLean, S. Selvaraj, M.R. Suresh, and A.A. Noujaim. Monoclonal antibodies and synthetic tumor-associated glycoconjugates in the study of the expression of Thomsen-Friedenreich-like and Tn-like antigens on human cancers. J Natl Cancer Inst. 78(3): p. 489–96, (1987).PubMedGoogle Scholar
  40. 40.
    S. Zhang, L.A. Walberg, S. Ogata, S.H. Itzkowitz, R.R. Koganty, M. Reddish, S.S. Gandhi, B.M. Longenecker, K.O. Lloyd, and P.O. Livingston. Immune sera and monoclonal antibodies define two configurations for the sialyl Tn tumor antigen. Cancer Res. 55(15): p. 3364–8, (1995).PubMedGoogle Scholar
  41. 41.
    L. Kostakoglu, C.R. Divgi, T. Gilewski, M. Theodoulou, J. Schlom, and S.M. Larson. Phase II radioimmunotherapy (RIT) trial with I-131 labeled monoclonal antibody CC49 in Tag-72 expressing breast cancer. J Nucl Med (Suppl). 35: p. 234, (1994).Google Scholar
  42. 42.
    S.M. Larson, J.A. Carrasquillo, D.C. Colcher, K. Yokoyama, J.C. Reynolds, S.A. Bacharach, A. Raubitchek, L. Pace, R.D. Finn, M. Rotman, and et al. Estimates of radiation absorbed dose for intraperitoneally administered iodine-131 radiolabeled B72.3 monoclonal antibody in patients with peritoneal carcinomatoses. J Nucl Med. 32(9): p. 1661–7, (1991).PubMedGoogle Scholar
  43. 43.
    G.D. MacLean, McEwan A., Noujaim A., Sykes T.R., Suresch M.R., Catz Z., H. H.R., and L. B.M. A novel strategy for cancer immunoscinitgrapy. Antibody Immunoconj Radiopharmaceut. 2: p. 15, (1989).Google Scholar
  44. 44.
    S.H. Itzkowitz, M. Yuan, C.K. Montgomery, T. Kjeldsen, H.K. Takahashi, W.L. Bigbee, and Y.S. Kim. Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer. Cancer Res. 49(1): p. 197–204, (1989).PubMedGoogle Scholar
  45. 45.
    G.D. MacLean, M.A. Reddish, M.B. Bowen-Yacyshyn, S. Poppema, and B.M. Longenecker. Active specific immunotherapy against adenocarcinomas. Cancer Invest. 12(1): p. 46–56, (1994).PubMedGoogle Scholar
  46. 46.
    P. Kimminoth, J. Roth, P.M. Lackie, D. Bitter-Suermann, and P.U. Heintz. Polysialic acid of the neural cell adhesion melecule distinquishes small cell lung carcinoma from carcinoids. Am J Pathol. 139: p. 297–304, (1991).Google Scholar
  47. 47.
    P.M. Lackie, C. Zuber, and J. Roth. Polysialic acid of the neural cell adhesion molecule (N-CAM) is widely expressed during organogenesis in mesodermal and endodermal derivatives. Differentiation. 57(2): p. 119–31, (1994).PubMedCrossRefGoogle Scholar
  48. 48.
    J. Hayrinen, H. Jennings, H.V. Raff, G. Rougon, N. Hanai, R. Gerardy-Schahn, and J. Finne. Antibodies to polysialic acid and its N-propyl derivative: binding properties and interaction with human embryonal brain glycopeptides. Journal of Infectious Diseases. 171: p. 1481–90, (1995).PubMedGoogle Scholar
  49. 49.
    H.G. Gottlinger, I. Funke, J.P. Johnson, J.M. Gokel, and G. Riethmuller. The epithelial cell surface antigen 17–1A, a target for antibody-mediated tumor therapy: its biochemical nature, tissue distribution and recognition by different monoclonal antibodies. Int J Cancer. 38(1): p. 47–53, (1986).PubMedCrossRefGoogle Scholar
  50. 50.
    A.F. LoBuglio, M.N. Saleh, J. Lee, M.B. Khazaeli, R. Carrano, H. Holden, and R.H. Wheeler. Phase I trial of multiple large doses of murine monoclonal antibody CO17–1A. I. Clinical aspects. J Natl Cancer Inst. 80(12): p. 932–6, (1988).PubMedCrossRefGoogle Scholar
  51. 51.
    G. Riethmuller, E. Schneider-Gadicke, G. Schlimok, W. Schmiegel, R. Raab, K. Hoffken, R. Gruber, H. Pichlmaier, H. Hirche, R. Pichlmayr, and et al. Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes’ C colorectal carcinoma. German Cancer Aid 17–1A Study Group. Lancet. 343(8907): p. 1177–83, (1994).PubMedCrossRefGoogle Scholar
  52. 52.
    R. Somasundaram, J. Zaloudik, L. Jacob, A. Benden, M. Sperlagh, E. Hart, G. Marks, M. Kane, M. Mastrangelo, and D. Herlyn. Induction of Antigen-Specific Tand B Cell Immunity in Colon Carcinoma Patients by Anti-Idiotypic Antibody. Journal of Immunology. p. 3253–3261, (1995).Google Scholar
  53. 53.
    S. Szala, M. Froehlich, M. Scollon, Y. Kasai, Z. Steplewski, H. Koprowski, and A.J. Linnenbach. Molecular cloning of cDNA for the carcinoma-associated antigen GA733–2. Proc Natl Acad Sci U S A. 87(9): p. 3542–6, (1990).PubMedCrossRefGoogle Scholar
  54. 54.
    W.T. Yin, A. Dnistrian, and K. Lloyd. Ovarian cancer antigen CA125 is encoded by the MUC16 mucin gene. International Journal of Cancer. 98: p. 737–740, (2002).CrossRefGoogle Scholar
  55. 55.
    S. Zhang, L.A. Graeber, F. Helling, G. Ragupathi, S. Adluri, K.O. Lloyd, and P.O. Livingston. Augmenting the immunogenicity of synthetic MUC1 peptide vaccines in mice. Cancer Res. 56(14): p. 3315–9, (1996).PubMedGoogle Scholar
  56. 56.
    P. Livingston, S. Zhang, S. Adluri, T.J. Yao, L. Graeber, G. Ragupathi, F. Helling, and M. Fleisher. Tumor cell reactivity mediated by IgM antibodies in sera from melanoma patients vaccinated with GM2 ganglioside covalently linked to KLH is increased by IgG antibodies. Cancer Immunol Immunother. 43(6): p. 324–30, (1997).PubMedCrossRefGoogle Scholar
  57. 57.
    F. Helling, A. Zhang, A. Shang, S. Adluri, M. Calves, R. Koganty, B.M. Longenecker, H.F. Oettgen, and P.O. Livingston. GM2-KLH conjugate vaccine: Increased immunogenicity in melanoma patients after administration with immunological adjuvant QS-21. Cancer Res. 55: p. 2783–2788, (1995).PubMedGoogle Scholar
  58. 58.
    S.-K. Kim, G. Ragupathi, S. Cappello, E. Kagan, and P.O. Livingston. Effect of immunological adjuvant combinations on the antibody and T-cell response to vaccination with MUC1-KLH and GD3-KLH conjugates. Vaccine. 19: p. 530–537, (2000).PubMedCrossRefGoogle Scholar
  59. 59.
    P.O. Livingston, S. Adluri, F. Helling, T.-J. Yao, C.R. Kensil, M.J. Newman, and D. Marciani. Phase I trial of immunological adjuvant QS-21 with a GM2 ganglioside-KLH conjugate vaccine in patients with malignant melanoma. Vaccine. 12: p. 1275–1280, (1994).PubMedCrossRefGoogle Scholar
  60. 60.
    P.O. Livingston, M.J. Calves, and E.J. Natoli, Jr. Approaches to augmenting the immunogenicity of the ganglioside GM2 in mice: purified GM2 is superior to whole cells. J Immunol. 138(5): p. 1524–9, (1987).PubMedGoogle Scholar
  61. 61.
    G. Ritter, E. Boosfeld, M.J. Calves, H.F. Oettgen, L.J. Old, and P.O. Livingston. Antibody response to immunization with purified GD3 ganglioside and GD3 derivatives (lactones, amide and gangliosidol) in the mouse. Immunobiology. 182(1): p. 32–43, (1990).PubMedGoogle Scholar
  62. 62.
    G. Ritter, E. Boosfeld, E. Markstein, R.K. Yu, S.L. Ren, W.B. Stallcup, H.F. Oettgen, L.J. Old, and P.O. Livingston. Biochemical and serological characteristics of natural 9-O-acetyl GD3 from human melanoma and bovine buttermilk and chemically O-acetylated GD3. Cancer Res. 50(5): p. 1403–10, (1990).PubMedGoogle Scholar
  63. 63.
    G. Ritter, E. Boosfeld, R. Adluri, M. Calves, H.F. Oettgen, L.J. Old, and p. Livingston. Antibody response to immunization with ganglioside GD3 and GD3 congeners (lactones, amide and gangliosidol) in patients with malignant melanoma. Int J Cancer. 48(3): p. 379–85, (1991).PubMedCrossRefGoogle Scholar
  64. 64.
    G. Ritter, E. Ritter-Boosfeld, R. Adluri, M. Calves, S. Ren, R.K. Yu, H.F. Oettgen, L.J. Old, and P.O. Livingston. Analysis of the antibody response to immunization with purified O-acetyl GD3 gangliosides in patients with malignant melanoma. Int J Cancer. 62(6): p. 668–72, (1995).PubMedCrossRefGoogle Scholar
  65. 65.
    F. Helling, A. Shang, M. Calves, S. Zhang, S. Ren, R.K. Yu, H.F. Oettgen, and P.O. Livingston. GD3 vaccines for melanoma: superior immunogenicity of keyhole limpet hemocyanin conjugate vaccines. Cancer Res. 54(1): p. 197–203, (1994).PubMedGoogle Scholar
  66. 66.
    C.R. Kensil, U. Patel, M. Lennick, and D. Marciani. Separation and characterization of saponins with adjuvant activity fro Quillaja saponaria molina cortex. J. Immunology. 146: p. 431, (1991).Google Scholar
  67. 67.
    S.-K. Kim, G. Ragupathi, C. Musselli, and P.O. Livingston. Comparison of the effect of different immunological adjuvants on the antibody and T cell response to immunization with MUC1-KLH and GD3-KLH conjugate vaccines. Vaccine. 18: p. 597–603, (1999).PubMedCrossRefGoogle Scholar
  68. 68.
    G. Ragupathi, R.R. Koganty, D. Qui, K.O. Lloyd, and P.O. Livingston. A novel and efficient method for synthetic carbohydrate vaccine preparation: Synthesis of sialyl Tn-KLH conjugate using a (4-N-maleimido methyl) cyclohexane-1-carboxyl hydrazide (MMCCH) linker arm. Glycoconjugate J. 15: p. 217–221, (1998).CrossRefGoogle Scholar
  69. 69.
    G. Ragupathi, L. Howard, S. Cappello, R.R. Koganty, D. Qiu, B.M. Longenecker, M.A. Reddish, K.O. Lloyd, and P.O. Livingston. Vaccines prepared with sialyl-Tn and sialyl-Tn trimers using the 4-(4-maleimidomethyl) cyclohexane-1-carboxyl hydrazide linker group result in optimal antibody titers against ovine submaxillary mucin and sialyl-Tn-positive tumor cells. Can Immunol Immunother. 48: p. 1–8, (1999).CrossRefGoogle Scholar
  70. 70.
    G. Ragupathi, F. Koide, N. Sathyan, E. Kagan, M. Spassova, W. Bornmann, P. Gregor, C.A. Reis, H. Clausen, S.J. Danishefsky, and P.O. Livingston. A preclinical study comparing approaches for augmenting the immunogenicity of a heptavalent KLH-conjugate vaccine against epithelial cancers. Cancer Immunol Immunother. 52(10): p. 608–16, (2003).PubMedCrossRefGoogle Scholar
  71. 71.
    P.O. Livingston, E.J. Natoli, M.J. Calves, E. Stockert, H.F. Oettgen, and L.J. Old. Vaccines containing purified GM2 ganglioside elicit GM2 antibodies in melanoma patients. Proc Natl Acad Sci U S A. 84(9): p. 2911–5, (1987).PubMedCrossRefGoogle Scholar
  72. 72.
    J.M. Kirkwood, J.G. Ibrahim, J.A. Sosman, V.K. Sondak, S.S. Agarwala, M.S. Ernstoff, and U. Rao. High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial E1694/S9512/C509801. J Clin Oncol. 19(9): p. 2370–80, (2001).PubMedGoogle Scholar
  73. 73.
    M.N. Dickler, G. Ragupathi, N.X. Liu, C. Musselli, D.J. Martino, V.A. Miller, M.G. Kris, F.T. Brezicka, P.O. Livingston, and S.C. Grant. Immunogenicity of the fucosyl-GM1-keyhole limpet hemocyanin (KLH) conjugate vaccine in patients with small cell lung cancer. Cancer Res. 5: p. 2773–2779, (1999).Google Scholar
  74. 74.
    L.M. Krug, G. Ragupathi, C. Hood, M.G. Kris, V.A. Miller, J.R. Allen, S.J. Keding, S.J. Danishefsky, J. Gomez, L. Tyson, B. Pizzo, V. Baez, and P.O. Livingston. Vaccination of patients with small-cell lung cancer with synthetic fucosyl GM-1 conjugated to keyhole limpet hemocyanin. Clin Cancer Res. 10(18 Pt 1): p. 6094–100, (2004).PubMedCrossRefGoogle Scholar
  75. 75.
    G.A. Nores, T. Dohi, M. Taniguchi, and S. Hakomori. Density-dependent recognition of cell surface GM3 by a certain anti-melanoma antibody, and GM3 lactone as a possible immunogen: requirements for tumor-associated antigen and immunogen. J Immunol. 139(9): p. 3171–6, (1987).PubMedGoogle Scholar
  76. 76.
    G. Ragupathi, M. Meyers, S. Adluri, L. Howard, R.K. Yu, G. Ritter, and P.O. Livingston. Phase I trial with GD3-lactone-KLH conjugate and immunological adjuvant QS-21 vaccine with malignant melanoma. Int. J. Cancer. 85: p. 659–666, (2000).PubMedCrossRefGoogle Scholar
  77. 77.
    G. Ragupathi, P.O. Livingston, C. Hood, J. Gathuru, S.E. Krown, P.B. Chapman, J.D. Wolchok, L.J. Williams, R.C. Oldfield, and W.J. Hwu. Consistent antibody response against ganglioside GD2 induced in patients with melanoma by a GD2 lactone-keyhole limpet hemocyanin conjugate vaccine plus immunological adjuvant QS-21. Clin Cancer Res. 9(14): p. 5214–20, (2003).PubMedGoogle Scholar
  78. 78.
    V. Behar and S. Danishefsky. A highly convergent synthesis of the Lewis-y blood group determinant in conjugatable form. Angew Chem Int Ed Engl. 33: p. 1468–1470, (1994).CrossRefGoogle Scholar
  79. 79.
    G. Ragupathi, T.K. Park, S. Zhang, I.J. Kim, K. Graeber, S. Adluri, K.O. Lloyd, S.J. Danishefsky, and P.O. Livingston. Immunization of mice with the synthetic hexasaccharide Globo H results in antibodies against human cancer cells. Angewandte. Chemie. 36: p. 125–128, (1997).CrossRefGoogle Scholar
  80. 80.
    G. Ragupathi, S. Slovin, S. Adluri, D. Sames, I.-J. Kim, H.M. Kim, M. Spassova, W.G. Bornmann, K. Lloyd, H.I. Scher, P.O. Livingston, and S.J. Danishefsky. A fully synthetic globo H carbohydrate vaccine induces a focused humoral response in prostate cancer patients. Angewandte. Chemie. 38(A proof of Principle.): p. 563–566, (1999).Google Scholar
  81. 81.
    V. Kudryashov, H.M. Kim, G. Ragupathi, S.J. Danishefsky, P.O. Livingston, and K.O. Lloyd. Immunogenicity of synthetic conjugates of Lewisy oligosaccharide with protein in mice: towards the design of anticancer vaccines. Cancer Immunol. Immunother. 45: p. 281, (1998).PubMedCrossRefGoogle Scholar
  82. 82.
    T. Gilewski, G. Ragupathi, S. Bhuta, L.J. Williams, C. Musselli, X.F. Zhang, K.P. Bencsath, K.S. Panageas, J. Chin, L. Norton, A.N. Houghton, P.O. Livingston, and S.J. Danishefsky. Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate: a phase I trial. Proc Natl Acad Sci USA. 98: p. 3270–3275, (2001).PubMedCrossRefGoogle Scholar
  83. 83.
    S.F. Slovin, G. Ragupathi, S. Adluri, G. Ungers, K. Terry, S. Kim, M. Spassova, W.G. Bornmann, M. Fazzari, L. Dantis, K. Olkiewicz, K.O. Lloyd, P.O. Livingston, S.J. Danishefsky, and H.I. Scher. Carbohydrate vaccines in cancer: immunogenicity of a fully synthetic globo H hexasaccharide conjugate in man. Proc Natl Acad Sci U S A. 96(10): p. 5710–5, (1999).PubMedCrossRefGoogle Scholar
  84. 84.
    P. Sabbatini, V. Kudryashov, S. Danishefsky, P.O. Livingston, G. Ragupathi, W. Bornmann, M. Spassova, D. Spriggs, C. Aghajanian, S. Soignet, M. Peyton, C. O’Flaherty, J. Curtin, and K.O. Lloyd. Immunization of ovarian cancer patients with a synthetic LewisY - protein conjugate vaccine: clinical and serological results. Int. J. Cancer. 87: p. 79–85, (2000).PubMedCrossRefGoogle Scholar
  85. 85.
    S. Adluri, F. Helling, M.J. Calves, K.O. Lloyd, and P.O. Livingston. Immunogenicity of synthetic TF- and sTn-KLH conjugates in colorectal carcinoma patients. Cancer Immunol. Immunother. 41: p. 185–192, (1995).PubMedGoogle Scholar
  86. 86.
    H. Nakada, M. Inoue, Y. Numata, N. Tanaka, I. Funakoshi, S. Fukui, A. Mellors, and I. Yamashina. Epitopic structure of Tn glycophorin A for an anti-Tn antibody (MLS 128). Proc Natl Acad Sci U S A. 90(6): p. 2495–9, (1993).PubMedCrossRefGoogle Scholar
  87. 87.
    A. Kurosaka, H. Kitagawa, S. Fukui, Y. Numata, H. Nakada, I. Funakoshi, T. Kawasaki, T. Ogawa, H. Iijima, and I. Yamashina. A monoclonal antibody that recognizes a cluster of a disaccharide, NeuAc alpha(2—-6)GalNAc, in mucin-type glycoproteins. J Biol Chem. 263(18): p. 8724–6, (1988).PubMedGoogle Scholar
  88. 88.
    P.O. Livingston, R.R. Koganty, B.M. Longenecker, K.O. Lloyd, and M. Calves. Studies on the immunogencity of synthetic and natural Thomsen-Friedenreich (TF) antigens in mice: Augmentation of the response by Quil A and SAF-m adjuvants and analysis of the specificity of the responses. Vaccine Res. 1: p. 99–109, (1992).Google Scholar
  89. 89.
    T. Gilewski, G. Ragupathi, S. Powell, S. Bhuta, K. Panageas, J. Chin, L. Norton, A.N. Houghton, and P.O. Livingston. Vaccination of high risk breast cancer patients with sTn (clustered)-keyhole limpet hemocyanin conjugate plus the immunological adjuvant QS-21. Clin Cancer Res. p. In Press, (2005).Google Scholar
  90. 90.
    S.F. Slovin, G. Ragupathi, C. Musselli, C. Fernandez, M. Diani, D. Verbel, S. Danishefsky, P.O. Livingston, and H.I. Scher. Thomsen-Friedendreich (TF) antigen as a target for prostate cancer vaccine: Results of a phase I trial with TF cluster (c)-KLH-QS-21 conjugate vaccine in biochemically relapsed prostate cancer. Can Imm Immuno. p. In Press, (2005).Google Scholar
  91. 91.
    S.F. Slovin, G. Ragupathi, C. Musselli, K. Olkiewicz, D. Verbel, S.D. Kuduk, J.B. Schwarz, D. Sames, S. Danishefsky, P.O. Livingston, and H.I. Scher. Fully synthetic carbohydrate-based vaccines in biochemically relapsed prostate cancer: clinical trial results with alpha-N-acetylgalactosamine-O-serine/threonine conjugate vaccine. J Clin Oncol. 21(23): p. 4292–8, (2003).PubMedCrossRefGoogle Scholar
  92. 92.
    G.F. Springer, P.R. Desai, H. Tegtmeyer, B.D. Spencer, and E.F. Scanlon. Pancarcinoma T/Tn antigen detects human carcinoma long before biopsy does and its vaccine prevents breast carcinoma recurrence. Ann N Y Acad Sci. 690: p. 355–7, (1993).PubMedCrossRefGoogle Scholar
  93. 93.
    G.D. MacLean, M.B. Bowen-Yacyshyn, J. Samuel, A. Meikle, G. Stuart, J. Nation, S. Poppema, M. Jerry, R. Koganty, T. Wong, and et al. Active immunization of human ovarian cancer patients against a common carcinoma (Thomsen-Friedenreich) determinant using a synthetic carbohydrate antigen. J Immunother. 11(4): p. 292–305, (1992).PubMedCrossRefGoogle Scholar
  94. 94.
    G.D. MacLean, D.W. Miles, R.D. Rubens, M.A. Reddish, and B.M. Longenecker. Enhancing the effect of THERATOPE STn-KLH cancer vaccine in patients with metastatic breast cancer by pretreatment with low-dose intravenous cyclophosphamide. J Immunother Emphasis Tumor Immunol. 19(4): p. 309–16, (1996).PubMedGoogle Scholar
  95. 95.
    G.D. MacLean, M. Reddish, R.R. Koganty, T. Wong, S. Gandhi, M. Smolenski, J. Samuel, J.M. Nabholtz, and B.M. Longenecker. Immunization of breast cancer patients using a synthetic sialyl-Tn glycoconjugate plus Detox adjuvant. Cancer Immunol Immunother. 36(4): p. 215–22, (1993).PubMedCrossRefGoogle Scholar
  96. 96.
    R.A. Pon, M. Lussier, Q.-L. Yang, and H.J. Jennings. N-Propionylated group B meningococcal polysaccharide mimics a Unique bactericidal capsular epitope in group B Neisseria menigitidis. J. Exp. Med. 185(11): p. 1929–1938, (1997).PubMedCrossRefGoogle Scholar
  97. 97.
    L.M. Krug, G. Ragupathi, K.K. Ng, C. Hood, H.J. Jennings, Z. Guo, M.G. Kris, V. Miller, B. Pizzo, L. Tyson, V. Baez, and P.O. Livingston. Vaccination of small cell lung cancer patients with polysialic acid or N-propionylated polysialic acid conjugated to keyhole limpet hemocyanin. Clin Cancer Res. 10(3): p. 916–23, (2004).PubMedCrossRefGoogle Scholar
  98. 98.
    S. Zhang, F. Helling, K.O. Lloyd, and P.O. Livingston. Increased tumor cell reactivity and complement-dependent cytotoxicity with mixtures of monoclonal antibodies against different gangliosides. Cancer Immunol Immunother. 40(2): p. 88–94, (1995).PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Philip O. Livingston
    • 1
  • Govind Ragupathi
    • 1
  1. 1.Laboratory of Tumor Vaccinology, Department of MedicineMemorial Sloan-Kettering Cancer CenterNew York

Personalised recommendations