Advertisement

Recombinant Viral and Bacterial Vaccines

  • Douglas W. Grosenbach
  • Jarett Feldman
  • Jeffrey Schlom
  • Scott I. Abrams

Keywords

Newcastle Disease Virus Cancer Vaccine Oncolytic Virus Recombinant Vaccinia Virus Modify Vaccinia Ankara 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams M, Borysiewicz L, Fiander A, Man S, Jasani B, Navabi H, Lipetz C, Evans AS, Mason M (2001) Clinical studies of human papilloma vaccines in pre-invasive and invasive cancer. Vaccine 19(17–19): 2549–2556PubMedGoogle Scholar
  2. 2.
    Agrawal N, Bettegowda C, Cheong I, Geschwind JF, Drake CG, Hipkiss EL, Tatsumi M, Dang LH, Diaz LA, Jr., Pomper M, Abusedera M, Wahl RL, Kinzler KW, Zhou S, Huso DL, Vogelstein B (2004) Bacteriolytic therapy can generate a potent immune response against experimental tumors. Proc Natl Acad Sci U S A 101(42): 15172–15177PubMedGoogle Scholar
  3. 3.
    Alexandroff AB, Jackson AM, O’Donnell MA, James K (1999) BCG immunotherapy of bladder cancer: 20 years on. Lancet 353(9165): 1689–1694PubMedGoogle Scholar
  4. 4.
    Anderson BD, Nakamura T, Russell SJ, Peng KW (2004) High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res 64(14): 4919–4926PubMedGoogle Scholar
  5. 5.
    Arlen PM, Gulley JL, Todd N, Lieberman R, Steinberg SM, Morin S, Bastian A, Marte J, Tsang KY, Beetham P, Grosenbach DW, Schlom J, Dahut W (2005) Antiandrogen, Vaccine And Combination Therapy In Patients With Nonmetastatic Hormone Refractory Prostate Cancer. J Urol 174(2): 539–546PubMedGoogle Scholar
  6. 6.
    Atkins GJ, Smyth JW, Fleeton MN, Galbraith SE, Sheahan BJ (2004) Alphaviruses and their derived vectors as anti-tumor agents. Curr Cancer Drug Targets 4(7): 597–607PubMedGoogle Scholar
  7. 7.
    Baldwin PJ, van der Burg SH, Boswell CM, Offringa R, Hickling JK, Dobson J, Roberts JS, Latimer JA, Moseley RP, Coleman N, Stanley MA, Sterling JC (2003) Vaccinia-expressed human papillomavirus 16 and 18 e6 and e7 as a therapeutic vaccination for vulval and vaginal intraepithelial neoplasia. Clin Cancer Res 9(14): 5205–5213PubMedGoogle Scholar
  8. 8.
    Basak SK, Kiertscher SM, Harui A, Roth MD (2004) Modifying adenoviral vectors for use as gene-based cancer vaccines. Viral Immunol 17(2): 182–196PubMedGoogle Scholar
  9. 9.
    Berry JM, Palefsky JM (2003) A review of human papillomavirus vaccines: from basic science to clinical trials. Front Biosci 8(s333–345)Google Scholar
  10. 10.
    Bessis N, GarciaCozar FJ, Boissier MC (2004) Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther 11 Suppl 1(S10–17)PubMedGoogle Scholar
  11. 11.
    Bettegowda C, Dang LH, Abrams R, Huso DL, Dillehay L, Cheong I, Agrawal N, Borzillary S, McCaffery JM, Watson EL, Lin KS, Bunz F, Baidoo K, Pomper MG, Kinzler KW, Vogelstein B, Zhou S (2003) Overcoming the hypoxic barrier to radiation therapy with anaerobic bacteria. Proc Natl Acad Sci U S A 100(25): 15083–15088PubMedGoogle Scholar
  12. 12.
    Blattman JN, Greenberg PD (2004) Cancer immunotherapy: a treatment for the masses. Science 305(5681): 200–205PubMedGoogle Scholar
  13. 13.
    Brockstedt DG, Giedlin MA, Leong ML, Bahjat KS, Gao Y, Luckett W, Liu W, Cook DN, Portnoy DA, Dubensky TW, Jr. (2004) Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci U S A 101(38): 13832–13837PubMedGoogle Scholar
  14. 14.
    Burnet FM (1970) The concept of immunological surveillance. Prog Exp Tumor Res 13(1–27)PubMedGoogle Scholar
  15. 15.
    Butterfield LH, Ribas A, Dissette VB, Amarnani SN, Vu HT, Oseguera D, Wang HJ, Elashoff RM, McBride WH, Mukherji B, Cochran AJ, Glaspy JA, Economou JS (2003) Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin Cancer Res 9(3): 998–1008PubMedGoogle Scholar
  16. 16.
    Cao ZA, Daniel D, Hanahan D (2002) Sub-lethal radiation enhances anti-tumor immunotherapy in a transgenic mouse model of pancreatic cancer. BMC Cancer 2(1): 11PubMedGoogle Scholar
  17. 17.
    Carroll MW, Overwijk WW, Chamberlain RS, Rosenberg SA, Moss B, Restifo NP (1997) Highly attenuated modified vaccinia virus Ankara (MVA) as an effective recombinant vector: a murine tumor model. Vaccine 15(4): 387–394PubMedGoogle Scholar
  18. 18.
    Cavacini LA, Duval M, Eder JP, Posner MR (2002) Evidence of determinant spreading in the antibody responses to prostate cell surface antigens in patients immunized with prostate-specific antigen. Clin Cancer Res 8(2): 368–373PubMedGoogle Scholar
  19. 19.
    Chakraborty M, Abrams SI, Coleman CN, Camphausen K, Schlom J, Hodge JW (2004) External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res 64(12): 4328–4337PubMedGoogle Scholar
  20. 20.
    Chen B, Timiryasova TM, Andres ML, Kajioka EH, Dutta-Roy R, Gridley DS, Fodor I (2000) Evaluation of combined vaccinia virus-mediated antitumor gene therapy with p53, IL-2, and IL-12 in a glioma model. Cancer Gene Ther 7(11): 1437–1447PubMedGoogle Scholar
  21. 21.
    Chen PW, Wang M, Bronte V, Zhai Y, Rosenberg SA, Restifo NP (1996) Therapeutic antitumor response after immunization with a recombinant adenovirus encoding a model tumor-associated antigen. J Immunol 156(1): 224–231PubMedGoogle Scholar
  22. 22.
    Cochlovius B, Stassar MJ, Schreurs MW, Benner A, Adema GJ (2002) Oral DNA vaccination: antigen uptake and presentation by dendritic cells elicits protective immunity. Immunol Lett 80(2): 89–96PubMedGoogle Scholar
  23. 23.
    Cooney EL, Collier AC, Greenberg PD, Coombs RW, Zarling J, Arditti DE, Hoffman MC, Hu SL, Corey L (1991) Safety of and immunological response to a recombinant vaccinia virus vaccine expressing HIV envelope glycoprotein. Lancet 337(8741): 567–572PubMedGoogle Scholar
  24. 24.
    Corona Gutierrez CM, Tinoco A, Navarro T, Contreras ML, Cortes RR, Calzado P, Reyes L, Posternak R, Morosoli G, Verde ML, Rosales R (2004) Therapeutic vaccination with MVA E2 can eliminate precancerous lesions (CIN 1, CIN 2, and CIN 3) associated with infection by oncogenic human papillomavirus. Hum Gene Ther 15(5): 421–431PubMedGoogle Scholar
  25. 25.
    Critchley RJ, Jezzard S, Radford KJ, Goussard S, Lemoine NR, Grillot-Courvalin C, Vassaux G (2004) Potential therapeutic applications of recombinant, invasive E. coli. Gene Ther 11(15): 1224–1233Google Scholar
  26. 26.
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9): 942–949PubMedGoogle Scholar
  27. 27.
    Dang LH, Bettegowda C, Agrawal N, Cheong I, Huso D, Frost P, Loganzo F, Greenberger L, Barkoczy J, Pettit GR, Smith AB, 3rd, Gurulingappa H, Khan S, Parmigiani G, Kinzler KW, Zhou S, Vogelstein B (2004) Targeting vascular and avascular compartments of tumors with C. novyi-NT and anti-microtubule agents. Cancer Biol Ther 3(3): 326–337PubMedGoogle Scholar
  28. 28.
    Demkowicz WE, Maa JS, Esteban M (1992) Identification and characterization of vaccinia virus genes encoding proteins that are highly antigenic in animals and are immunodominant in vaccinated humans. J Virol 66(1): 386–398PubMedGoogle Scholar
  29. 29.
    Dietrich G, Spreng S, Favre D, Viret JF, Guzman CA (2003) Live attenuated bacteria as vectors to deliver plasmid DNA vaccines. Curr Opin Mol Ther 5(1): 10–19PubMedGoogle Scholar
  30. 30.
    Dranoff G (2004) Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 4(1): 11–22PubMedGoogle Scholar
  31. 31.
    Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594): 850–854PubMedGoogle Scholar
  32. 32.
    Dudley ME, Wunderlich JR, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry RM, Marincola FM, Leitman SF, Seipp CA, Rogers-Freezer L, Morton KE, Nahvi A, Mavroukakis SA, White DE, Rosenberg SA (2002) A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J Immunother 25(3): 243–251PubMedGoogle Scholar
  33. 33.
    Dudley ME, Rosenberg SA (2003) Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat Rev Cancer 3(9): 666–675PubMedGoogle Scholar
  34. 34.
    Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA (2003) Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 26(4): 332–342PubMedGoogle Scholar
  35. 35.
    Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22(329–360)PubMedGoogle Scholar
  36. 36.
    Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21(2): 137–148PubMedGoogle Scholar
  37. 37.
    Eder JP, Kantoff PW, Roper K, Xu GX, Bubley GJ, Boyden J, Gritz L, Mazzara G, Oh WK, Arlen P, Tsang KY, Panicali D, Schlom J, Kufe DW (2000) A phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clin Cancer Res 6(5): 1632–1638PubMedGoogle Scholar
  38. 38.
    Emens LA, Jaffee EM (2003) Cancer vaccines: an old idea comes of age. Cancer Biol Ther 2(4 Suppl 1): S161–168PubMedGoogle Scholar
  39. 39.
    Feder-Mengus C, Schultz-Thater E, Oertli D, Marti WR, Heberer M, Spagnoli GC, Zajac P (2005) Nonreplicating recombinant vaccinia virus expressing CD40 ligand enhances APC capacity to stimulate specific CD4+ and CD8+ T cell responses. Hum Gene Ther 16(3): 348–360PubMedGoogle Scholar
  40. 40.
    Fenner F (1980) The global eradication of smallpox. Med J Aust 1(10): 455–455PubMedGoogle Scholar
  41. 41.
    Finn OJ (2003) Cancer vaccines: between the idea and the reality. Nat Rev Immunol 3(8): 630–641PubMedGoogle Scholar
  42. 42.
    Fodor I, Timiryasova T, Denes B, Yoshida J, Ruckle H, Lilly M (2005) Vaccinia virus mediated p53 gene therapy for bladder cancer in an orthotopic murine model. J Urol 173(2): 604–609PubMedGoogle Scholar
  43. 43.
    Fox ME, Lemmon MJ, Mauchline ML, Davis TO, Giaccia AJ, Minton NP, Brown JM (1996) Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia. Gene Ther 3(2): 173–178PubMedGoogle Scholar
  44. 44.
    Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4(12): 941–952PubMedGoogle Scholar
  45. 45.
    Galanis E, Okuno SH, Nascimento AG, Lewis BD, Lee RA, Oliveira AM, Sloan JA, Atherton P, Edmonson JH, Erlichman C, Randlev B, Wang Q, Freeman S, Rubin J (2005) Phase I-II trial of ONYX-015 in combination with MAP chemotherapy in patients with advanced sarcomas. Gene Ther 12(5): 437–445PubMedGoogle Scholar
  46. 46.
    Gentschev I, Dietrich G, Spreng S, Pilgrim S, Stritzker J, Kolb-Maurer A, Goebel W (2002) Delivery of protein antigens and DNA by attenuated intracellular bacteria. Int J Med Microbiol 291(6–7): 577–582PubMedGoogle Scholar
  47. 47.
    Gottschalk S, Edwards OL, Sili U, Huls MH, Goltsova T, Davis AR, Heslop HE, Rooney CM (2003) Generating CTLs against the subdominant Epstein-Barr virus LMP1 antigen for the adoptive immunotherapy of EBV-associated malignancies. Blood 101(5): 1905–1912PubMedGoogle Scholar
  48. 48.
    Griffith TS, Kawakita M, Tian J, Ritchey J, Tartaglia J, Sehgal I, Thompson TC, Zhao W, Ratliff TL (2001) Inhibition of murine prostate tumor growth and activation of immunoregulatory cells with recombinant canarypox viruses. J Natl Cancer Inst 93(13): 998–1007PubMedGoogle Scholar
  49. 49.
    Grosenbach DW, Barrientos JC, Schlom J, Hodge JW (2001) Synergy of vaccine strategies to amplify antigen-specific immune responses and antitumor effects. Cancer Res 61(11): 4497–4505PubMedGoogle Scholar
  50. 50.
    Grosenbach DW, Schlom J, Gritz L, Gomez Yafal A, Hodge JW (2003) A recombinant vector expressing transgenes for four T-cell costimulatory molecules (OX40L, B7–1, ICAM-1, LFA-3) induces sustained CD4+ and CD8+ T-cell activation, protection from apoptosis, and enhanced cytokine production. Cell Immunol 222(1): 45–57PubMedGoogle Scholar
  51. 51.
    Gulley J, Chen AP, Dahut W, Arlen PM, Bastian A, Steinberg SM, Tsang K, Panicali D, Poole D, Schlom J, Michael Hamilton J (2002) Phase I study of a vaccine using recombinant vaccinia virus expressing PSA (rV-PSA) in patients with metastatic androgen-independent prostate cancer. Prostate 53(2): 109–117PubMedGoogle Scholar
  52. 52.
    Gulley JL, Arlen PM, Bastian A, Morin S, Marte J, Beetham P, Tsang KY, Yokokawa J, Hodge JW, Menard C, Camphausen K, Coleman CN, Sullivan F, Steinberg SM, Schlom J, Dahut W (2005) Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res 11(9): 3353–3362PubMedGoogle Scholar
  53. 53.
    Guo CC, Ding J, Pan BR, Yu ZC, Han QL, Meng FP, Liu N, Fan DM (2003) Development of an oral DNA vaccine against MG7-Ag of gastric cancer using attenuated salmonella typhimurium as carrier. World J Gastroenterol 9(6): 1191–1195PubMedGoogle Scholar
  54. 54.
    Haley JL, Young DG, Alexandroff A, James K, Jackson AM (1999) Enhancing the immunotherapeutic potential of mycobacteria by transfection with tumour necrosis factor-alpha. Immunology 96(1): 114–121PubMedGoogle Scholar
  55. 55.
    Haller DG (2003) COX-2 inhibitors in oncology. Semin Oncol 30(4 Suppl 12): 2–8PubMedGoogle Scholar
  56. 56.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1): 57–70PubMedGoogle Scholar
  57. 57.
    Hawkins LK, Lemoine NR, Kirn D (2002) Oncolytic biotherapy: a novel therapeutic plafform. Lancet Oncol 3(1): 17–26PubMedGoogle Scholar
  58. 58.
    Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH (1997) ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 3(6): 639–645PubMedGoogle Scholar
  59. 59.
    Heise CC, Williams AM, Xue S, Propst M, Kirn DH (1999) Intravenous administration of ONYX-015, a selectively replicating adenovirus, induces antitumoral efficacy. Cancer Res 59(11): 2623–2628PubMedGoogle Scholar
  60. 60.
    Heppner F (1982) New technologies to combat malignant tumours of the brain. Anticancer Res 2(1–2): 101–109PubMedGoogle Scholar
  61. 61.
    Hodge JW, Sabzevari H, Yafal AG, Gritz L, Lorenz MG, Schlom J (1999) A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer Res 59(22): 5800–5807PubMedGoogle Scholar
  62. 62.
    Hodge JW, Grosenbach DW, Schlom J (2002) Vector-based delivery of tumor-associated antigens and T-cell co-stimulatory molecules in the induction of immune responses and anti-tumor immunity. Cancer Detect Prev 26(4): 275–291PubMedGoogle Scholar
  63. 63.
    Hodge JW, Grosenbach DW, Aarts WM, Poole DJ, Schlom J (2003) Vaccine therapy of established tumors in the absence of autoimmunity. Clin Cancer Res 9(5): 1837–1849PubMedGoogle Scholar
  64. 64.
    Hodge JW, Poole DJ, Aarts WM, Gomez Yafal A, Gritz L, Schlom J (2003) Modified vaccinia virus ankara recombinants are as potent as vaccinia recombinants in diversified prime and boost vaccine regimens to elicit therapeutic antitumor responses. Cancer Res 63(22): 7942–7949PubMedGoogle Scholar
  65. 65.
    Hodge JW, Greiner JW, Tsang KY, Sabzevari H, Kudo-Saito C, Grosenbach DW, Gulley JL, Arlen PM, Marshall JL, Panicali D, Schlom J (2006) Costimulatory molecules as adjuvants for immunotherapy. Front Biosci 11(788–803)PubMedGoogle Scholar
  66. 66.
    Horig H, Lee DS, Conkright W, Divito J, Hasson H, LaMare M, Rivera A, Park D, Tine J, Guito K, Tsang KW, Schlom J, Kaufman HL (2000) Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule. Cancer Immunol Immunother 49(9): 504–514PubMedGoogle Scholar
  67. 67.
    Hsueh EC, Gupta RK, Qi K, Morton DL (1998) Correlation of specific immune responses with survival in melanoma patients with distant metastases receiving polyvalent melanoma cell vaccine. J Clin Oncol 16(9): 2913–2920PubMedGoogle Scholar
  68. 68.
    Hsueh EC, Essner R, Foshag LJ, Ye W, Morton DL (2002) Active immunotherapy by reinduction with a polyvalent allogeneic cell vaccine correlates with improved survival in recurrent metastatic melanoma. Ann Surg Oncol 9(5): 486–492PubMedGoogle Scholar
  69. 69.
    Hurwitz AA, Foster BA, Kwon ED, Truong T, Choi EM, Greenberg NM, Burg MB, Allison JP (2000) Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res 60(9): 2444–2448PubMedGoogle Scholar
  70. 70.
    Ikeda H, Old LJ, Schreiber RD (2002) The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev 13(2): 95–109PubMedGoogle Scholar
  71. 71.
    Irvine KR, Chamberlain RS, Shulman EP, Surman DR, Rosenberg SA, Restifo NP (1997) Enhancing efficacy of recombinant anticancer vaccines with prime/boost regimens that use two different vectors. J Natl Cancer Inst 89(21): 1595–1601PubMedGoogle Scholar
  72. 72.
    Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5(10): 987–995PubMedGoogle Scholar
  73. 73.
    Jahrsdorfer B, Weiner GJ (2003) CpG oligodeoxynucleotides for immune stimulation in cancer immunotherapy. Curr Opin Investig Drugs 4(6): 686–690PubMedGoogle Scholar
  74. 74.
    Juillard V, Villefroy P, Godfrin D, Pavirani A, Venet A, Guillet JG (1995) Long-term humoral and cellular immunity induced by a single immunization with replication-defective adenovirus recombinant vector. Eur J Immunol 25(12): 3467–3473PubMedGoogle Scholar
  75. 75.
    Kalus RM, Kantor JA, Gritz L, Gomez Yafal A, Mazzara GP, Schlom J, Hodge JW (1999) The use of combination vaccinia vaccines and dual-gene vaccinia vaccines to enhance antigen-specific T-cell immunity via T-cell costimulation. Vaccine 17(7–8): 893–903PubMedGoogle Scholar
  76. 76.
    Karcher J, Dyckhoff G, Beckhove P, Reisser C, Brysch M, Ziouta Y, Helmke BH, Weidauer H, Schirrmacher V, Herold-Mende C (2004) Antitumor vaccination in patients with head and neck squamous cell carcinomas with autologous virus-modified tumor cells. Cancer Res 64(21): 8057–8061PubMedGoogle Scholar
  77. 77.
    Kass E, Panicali DL, Mazzara G, Schlom J, Greiner JW (2001) Granulocyte/macrophage-colony stimulating factor produced by recombinant avian poxviruses enriches the regional lymph nodes with antigen-presenting cells and acts as an immunoadjuvant. Cancer Res 61(1): 206–214PubMedGoogle Scholar
  78. 78.
    Kasuya H, Takeda S, Nomoto S, Nakao A (2005) The potential of oncolytic virus therapy for pancreatic cancer. Cancer Gene TherGoogle Scholar
  79. 79.
    Kaufman HL, Deraffele G, Mitcham J, Moroziewicz D, Cohen SM, Hurst-Wicker KS, Cheung K, Lee DS, Divito J, Voulo M, Donovan J, Dolan K, Manson K, Panicali D, Wang E, Horig H, Marincola FM (2005) Targeting the local tumor microenvironment with vaccinia virus expressing B7.1 for the treatment of melanoma. J Clin Invest 115(7): 1903–1912PubMedGoogle Scholar
  80. 80.
    Kaufmann AM, Stern PL, Rankin EM, Sommer H, Nuessler V, Schneider A, Adams M, Onon TS, Bauknecht T, Wagner U, Kroon K, Hickling J, Boswell CM, Stacey SN, Kitchener HC, Gillard J, Wanders J, Roberts JS, Zwierzina H (2002) Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clin Cancer Res 8(12): 3676–3685PubMedGoogle Scholar
  81. 81.
    King I, Bermudes D, Lin S, Belcourt M, Pike J, Troy K, Le T, Ittensohn M, Mao J, Lang W, Runyan JD, Luo X, Li Z, Zheng LM (2002) Tumor-targeted Salmonella expressing cytosine deaminase as an anticancer agent. Hum Gene Ther 13(10): 1225–1233PubMedGoogle Scholar
  82. 82.
    Kirn D, Martuza RL, Zwiebel J (2001) Replication-selective virotherapy for cancer: Biological principles, risk management and future directions. Nat Med 7(7): 781–787PubMedGoogle Scholar
  83. 83.
    Kochi SK, Killeen KP, Ryan US (2003) Advances in the development of bacterial vector technology. Expert Rev Vaccines 2(1): 31–43PubMedGoogle Scholar
  84. 84.
    Krieg AM (2000) Immune effects and mechanisms of action of CpG motifs. Vaccine 19(6): 618–622PubMedGoogle Scholar
  85. 85.
    Kuball J, Schuler M, Antunes Ferreira E, Herr W, Neumann M, Obenauer-Kutner L, Westreich L, Huber C, Wolfel T, Theobald M (2002) Generating p53-specific cytotoxic T lymphocytes by recombinant adenoviral vector-based vaccination in mice, but not man. Gene Ther 9(13): 833–843PubMedGoogle Scholar
  86. 86.
    Kudo-Saito C, Schlom J, Hodge JW (2005) Induction of an antigen cascade by diversified subcutaneous/intratumoral vaccination is associated with antitumor responses. Clin Cancer Res 11(6): 2416–2426PubMedGoogle Scholar
  87. 87.
    Lee KC, Zheng LM, Margitich D, Almassian B, King I (2001) Evaluation of the acute and subchronic toxic effects in mice, rats, and monkeys of the genetically engineered and Escherichia coli cytosine deaminase gene-incorporated Salmonella strain, TAPET-CD, being developed as an antitumor agent. Int J Toxicol 20(4): 207–217PubMedGoogle Scholar
  88. 88.
    Leitner WW, Ying H, Restifo NP (1999) DNA and RNA-based vaccines: principles, progress and prospects. Vaccine 18(9–10): 765–777PubMedGoogle Scholar
  89. 89.
    Leitner WW, Hwang LN, deVeer MJ, Zhou A, Silverman RH, Williams BR, Dubensky TW, Ying H, Restifo NP (2003) Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat Med 9(1): 33–39PubMedGoogle Scholar
  90. 90.
    Lemmon MJ, van Zijl P, Fox ME, Mauchline ML, Giaccia AJ, Minton NP, Brown JM (1997) Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment. Gene Ther 4(8): 791–796PubMedGoogle Scholar
  91. 91.
    Levy B, Panicalli D, Marshall J (2004) TRICOM: enhanced vaccines as anticancer therapy. Expert Rev Vaccines 3(4): 397–402PubMedGoogle Scholar
  92. 92.
    Lin E, Nemunaitis J (2004) Oncolytic viral therapies. Cancer Gene Ther 11(10): 643–664PubMedGoogle Scholar
  93. 93.
    Lin J, Lin E, Nemunaitis J (2004) Bacteria in the treatment of cancer. Curr Opin Mol Ther 6(6): 629–639PubMedGoogle Scholar
  94. 94.
    Liu M, Acres B, Balloul JM, Bizouarne N, Paul S, Slos P, Squiban P (2004) Gene-based vaccines and immunotherapeutics. Proc Natl Acad Sci U S A 101 Suppl 2(14567–14571)PubMedGoogle Scholar
  95. 95.
    Liu SC, Minton NP, Giaccia AJ, Brown JM (2002) Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis. Gene Ther 9(4): 291–296PubMedGoogle Scholar
  96. 96.
    Lode HN, Pertl U, Xiang R, Gaedicke G, Reisfeld RA (2000) Tyrosine hydroxylase-based DNA-vaccination is effective against murine neuroblastoma. Med Pediatr Oncol 35(6): 641–646PubMedGoogle Scholar
  97. 97.
    Loessner H, Weiss S (2004) Bacteria-mediated DNA transfer in gene therapy and vaccination. Expert Opin Biol Ther 4(2): 157–168PubMedGoogle Scholar
  98. 98.
    Lorence RM, Pecora AL, Major PP, Hotte SJ, Laurie SA, Roberts MS, Groene WS, Bamat MK (2003) Overview of phase I studies of intravenous administration of PV701, an oncolytic virus. Curr Opin Mol Ther 5(6): 618–624PubMedGoogle Scholar
  99. 99.
    Lou E (2003) Oncolytic herpes viruses as a potential mechanism for cancer therapy. Acta Oncol 42(7): 660–671PubMedGoogle Scholar
  100. 100.
    Luo Y, Zhou H, Mizutani M, Mizutani N, Reisfeld RA, Xiang R (2003) Transcription factor Fos-related antigen 1 is an effective target for a breast cancer vaccine. Proc Natl Acad Sci U S A 100(15): 8850–8855PubMedGoogle Scholar
  101. 101.
    Machiels JP, Reilly RT, Emens LA, Ercolini AM, Lei RY, Weintraub D, Okoye FI, Jaffee EM (2001) Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res 61(9): 3689–3697PubMedGoogle Scholar
  102. 102.
    Malmgren RA, Flanigan CC (1955) Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration. Cancer Res 15(7): 473–478PubMedGoogle Scholar
  103. 103.
    Marshall JL, Hawkins MJ, Tsang KY, Richmond E, Pedicano JE, Zhu MZ, Schlom J (1999) Phase I study in cancer patients of a replication-defective avipox recombinant vaccine that expresses human carcinoembryonic antigen. J Clin Oncol 17(1): 332–337PubMedGoogle Scholar
  104. 104.
    Marshall JL, Hoyer RJ, Toomey MA, Faraguna K, Chang P, Richmond E, Pedicano JE, Gehan E, Peck RA, Arlen P, Tsang KY, Schlom J (2000) Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J Clin Oncol 18(23): 3964–3973PubMedGoogle Scholar
  105. 105.
    Marshall JL, Gulley JL, Arlen PM, Beetham PK, Tsang KY, Slack R, Hodge JW, Doren S, Grosenbach DW, Hwang J, Fox E, Odogwu L, Park S, Panicali D, Schlom J (2005) Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. J Clin Oncol 23(4): 720–731PubMedGoogle Scholar
  106. 106.
    McAneny D, Ryan CA, Beazley RM, Kaufman HL (1996) Results of a phase I trial of a recombinant vaccinia virus that expresses carcinoembryonic antigen in patients with advanced colorectal cancer. Ann Surg Oncol 3(5): 495–500PubMedGoogle Scholar
  107. 107.
    McCormick F (2003) Cancer-specific viruses and the development of ONYX-015. Cancer Biol Ther 2(4 Suppl 1): S157–160PubMedGoogle Scholar
  108. 108.
    Melani C, Chiodoni C, Forni G, Colombo MP (2003) Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102(6): 2138–2145PubMedGoogle Scholar
  109. 109.
    Meyer RG, Britten CM, Siepmann U, Petzold B, Sagban TA, Lehr HA, Weigle B, Schmitz M, Mateo L, Schmidt B, Bernhard H, Jakob T, Hein R, Schuler G, Schuler-Thurner B, Wagner SN, Drexler I, Sutter G, Arndtz N, Chaplin P, Metz J, Enk A, Huber C, Wolfel T (2005) A phase I vaccination study with tyrosinase in patients with stage II melanoma using recombinant modified vaccinia virus Ankara (MVA-hTyr). Cancer Immunol Immunother 54(5): 453–467PubMedGoogle Scholar
  110. 110.
    Michael A, Ball G, Quatan N, Wushishi F, Russell N, Whelan J, Chakraborty P, Leader D, Whelan M, Pandha H (2005) Delayed disease progression after allogeneic cell vaccination in hormone-resistant prostate cancer and correlation with immunologic variables. Clin Cancer Res 11(12): 4469–4478PubMedGoogle Scholar
  111. 111.
    Mincheff M, Tchakarov S, Zoubak S, Loukinov D, Botev C, Altankova I, Georgiev G, Petrov S, Meryman HT (2000) Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: a phase I/II clinical trial. Eur Urol 38(2): 208–217PubMedGoogle Scholar
  112. 112.
    Minton NP, Mauchline ML, Lemmon MJ, Brehm JK, Fox M, Michael NP, Giaccia A, Brown JM (1995) Chemotherapeutic tumour targeting using clostridial spores. FEMS Microbiol Rev 17(3): 357–364PubMedGoogle Scholar
  113. 113.
    Mose JR, Mose G, Propst A, Heppner F (1967) [Oncolysis of malignant tumors by Clostridium strain M 55]. Med Klin 62(5): 189–193PubMedGoogle Scholar
  114. 114.
    Moss B (1996) Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc Natl Acad Sci U S A 93(21): 11341–11348PubMedGoogle Scholar
  115. 115.
    Mulryan K, Ryan MG, Myers KA, Shaw D, Wang W, Kingsman SM, Stern PL, Carroll MW (2002) Attenuated recombinant vaccinia virus expressing oncofetal antigen (tumor-associated antigen) 5T4 induces active therapy of established tumors. Mol Cancer Ther 1(12): 1129–1137PubMedGoogle Scholar
  116. 116.
    Nakamura T, Sasaki T, Fujimori M, Yazawa K, Kano Y, Amano J, Taniguchi S (2002) Cloned cytosine deaminase gene expression of Bifidobacterium longum and application to enzyme/pro-drug therapy of hypoxic solid tumors. Biosci Biotechnol Biochem 66(11): 2362–2366PubMedGoogle Scholar
  117. 117.
    Nakamura T, Russell SJ (2004) Oncolytic measles viruses for cancer therapy. Expert Opin Biol Ther 4(10): 1685–1692PubMedGoogle Scholar
  118. 118.
    Nakamura T, Peng KW, Harvey M, Greiner S, Lorimer IA, James CD, Russell SJ (2005) Rescue and propagation of fully retargeted oncolytic measles viruses. Nat Biotechnol 23(2): 209–214PubMedGoogle Scholar
  119. 119.
    Nauts HC, McLaren JR (1990) Coley toxins–the first century. Adv Exp Med Biol 267(483–500)PubMedGoogle Scholar
  120. 120.
    Nelson NJ (1999) Scientific interest in Newcastle disease virus is reviving. J Natl Cancer Inst 91(20): 1708–1710PubMedGoogle Scholar
  121. 121.
    Nemunaitis J, Cunningham C, Senzer N, Kuhn J, Cramm J, Litz C, Cavagnolo R, Cahill A, Clairmont C, Sznol M (2003) Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther 10(10): 737–744PubMedGoogle Scholar
  122. 122.
    Niethammer AG, Primus FJ, Xiang R, Dolman CS, Ruehlmann JM, Ba Y, Gillies SD, Reisfeld RA (2001) An oral DNA vaccine against human carcinoembryonic antigen (CEA) prevents growth and dissemination of Lewis lung carcinoma in CEA transgenic mice. Vaccine 20(3–4): 421–429PubMedGoogle Scholar
  123. 123.
    Niethammer AG, Xiang R, Ruehlmann JM, Lode HN, Dolman CS, Gillies SD, Reisfeld RA (2001) Targeted interleukin 2 therapy enhances protective immunity induced by an autologous oral DNA vaccine against murine melanoma. Cancer Res 61(16): 6178–6184PubMedGoogle Scholar
  124. 124.
    Niethammer AG, Xiang R, Becker JC, Wodrich H, Pertl U, Karsten G, Eliceiri BP, Reisfeld RA (2002) A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med 8(12): 1369–1375PubMedGoogle Scholar
  125. 125.
    Norman KL, Lee PW (2005) Not all viruses are bad guys: the case for reovirus in cancer therapy. Drug Discov Today 10(12): 847–855PubMedGoogle Scholar
  126. 126.
    Nuyts S, Theys J, Landuyt W, van Mellaert L, Lambin P, Anne J (2001) Increasing specificity of anti-tumor therapy: cytotoxic protein delivery by non-pathogenic clostridia under regulation of radio-induced promoters. Anticancer Res 21(2A): 857–861PubMedGoogle Scholar
  127. 127.
    Nuyts S, Van Mellaert L, Theys J, Landuyt W, Lambin P, Anne J (2001) The use of radiation-induced bacterial promoters in anaerobic conditions: a means to control gene expression in clostridium-mediated therapy for cancer. Radiat Res 155(5): 716–723PubMedGoogle Scholar
  128. 128.
    Nuyts S, Van Mellaert L, Theys J, Landuyt W, Lambin P, Anne J (2002) Clostridium spores for tumor-specific drug delivery. Anticancer Drugs 13(2): 115–125PubMedGoogle Scholar
  129. 129.
    Okamoto M, Sato M (2003) Toll-like receptor signaling in anti-cancer immunity. J Med Invest 50(1–2): 9–24PubMedGoogle Scholar
  130. 130.
    Ostrand-Rosenberg S (2004) Animal models of tumor immunity, immunotherapy and cancer vaccines. Curr Opin Immunol 16(2): 143–150PubMedGoogle Scholar
  131. 131.
    Overwijk WW, Lee DS, Surman DR, Irvine KR, Touloukian CE, Chan CC, Carroll MW, Moss B, Rosenberg SA, Restifo NP (1999) Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4(+) T lymphocytes. Proc Natl Acad Sci U S A 96(6): 2982–2987PubMedGoogle Scholar
  132. 132.
    Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA, Dellemijn TA, Antony PA, Spiess PJ, Palmer DC, Heimann DM, Klebanoff CA, Yu Z, Hwang LN, Feigenbaum L, Kruisbeek AM, Rosenberg SA, Restifo NP (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198(4): 569–580PubMedGoogle Scholar
  133. 133.
    Paglia P, Medina E, Arioli I, Guzman CA, Colombo MP (1998) Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella typhimurium, results in protective immunity against a murine fibrosarcoma. Blood 92(9): 3172–3176PubMedGoogle Scholar
  134. 134.
    Pantuck AJ, van Ophoven A, Gitlitz BJ, Tso CL, Acres B, Squiban P, Ross ME, Belldegrun AS, Figlin RA (2004) Phase I trial of antigen-specific gene therapy using a recombinant vaccinia virus encoding MUC-1 and IL-2 in MUC-1-positive patients with advanced prostate cancer. J Immunother 27(3): 240–253PubMedGoogle Scholar
  135. 135.
    Paoletti E (1996) Applications of pox virus vectors to vaccination: an update. Proc Natl Acad Sci U S A 93(21): 11349–11353PubMedGoogle Scholar
  136. 136.
    Pardoll D (2003) Does the immune system see tumors as foreign or self? Annu Rev Immunol 21(807–839)PubMedGoogle Scholar
  137. 137.
    Pardoll DM (1998) Cancer vaccines. Nat Med 4(5 Suppl): 525–531PubMedGoogle Scholar
  138. 138.
    Park JM, Terabe M, Sakai Y, Munasinghe J, Forni G, Morris JC, Berzofsky JA (2005) Early role of CD4+ Th1 cells and antibodies in HER-2 adenovirus vaccine protection against autochthonous mammary carcinomas. J Immunol 174(7): 4228–4236PubMedGoogle Scholar
  139. 139.
    Paterson Y, Ikonomidis G (1996) Recombinant Listeria monocytogenes cancer vaccines. Curr Opin Immunol 8(5): 664–669PubMedGoogle Scholar
  140. 140.
    Pawinski A, Sylvester R, Kurth KH, Bouffioux C, van der Meijden A, Parmar MK, Bijnens L (1996) A combined analysis of European Organization for Research and Treatment of Cancer, and Medical Research Council randomized clinical trials for the prophylactic treatment of stage TaT1 bladder cancer. European Organization for Research and Treatment of Cancer Genitourinary Tract Cancer Cooperative Group and the Medical Research Council Working Party on Superficial Bladder Cancer. J Urol 156(6): 1934–1940, discussion 1940–1931PubMedGoogle Scholar
  141. 141.
    Pecora AL, Rizvi N, Cohen GI, Meropol NJ, Sterman D, Marshall JL, Goldberg S, Gross P, O’Neil JD, Groene WS, Roberts MS, Rabin H, Bamat MK, Lorence RM (2002) Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol 20(9): 2251–2266PubMedGoogle Scholar
  142. 142.
    Perricone MA, Claussen KA, Smith KA, Kaplan JM, Piraino S, Shankara S, Roberts BL (2000) Immunogene therapy for murine melanoma using recombinant adenoviral vectors expressing melanoma-associated antigens. Mol Ther 1(3): 275–284PubMedGoogle Scholar
  143. 143.
    Pertl U, Wodrich H, Ruehlmann JM, Gillies SD, Lode HN, Reisfeld RA (2003) Immunotherapy with a posttranscriptionally modified DNA vaccine induces complete protection against metastatic neuroblastoma. Blood 101(2): 649–654PubMedGoogle Scholar
  144. 144.
    Phuangsab A, Lorence RM, Reichard KW, Peeples ME, Walter RJ (2001) Newcastle disease virus therapy of human tumor xenografts: antitumor effects of local or systemic administration. Cancer Lett 172(1): 27–36PubMedGoogle Scholar
  145. 145.
    Phuong LK, Allen C, Peng KW, Giannini C, Greiner S, TenEyck CJ, Mishra PK, Macura SI, Russell SJ, Galanis EC (2003) Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res 63(10): 2462–2469PubMedGoogle Scholar
  146. 146.
    Poland GA, Grabenstein JD, Neff JM (2005) The US smallpox vaccination program: a review of a large modern era smallpox vaccination implementation program. Vaccine 23(17–18): 2078–2081PubMedGoogle Scholar
  147. 147.
    Post DE, Fulci G, Chiocca EA, Van Meir EG (2004) Replicative oncolytic herpes simplex viruses in combination cancer therapies. Curr Gene Ther 4(1): 41–51PubMedGoogle Scholar
  148. 148.
    Reisfeld RA, Niethammer AG, Luo Y, Xiang R (2004) DNA vaccines suppress tumor growth and metastases by the induction of anti-angiogenesis. Immunol Rev 199(181–190)PubMedGoogle Scholar
  149. 149.
    Ribas A, Timmerman JM, Butterfield LH, Economou JS (2003) Determinant spreading and tumor responses after peptide-based cancer immunotherapy. Trends Immunol 24(2): 58–61PubMedGoogle Scholar
  150. 150.
    Ribas A, Glaspy JA, Lee Y, Dissette VB, Seja E, Vu HT, Tchekmedyian NS, Oseguera D, Comin-Anduix B, Wargo JA, Amarnani SN, McBride WH, Economou JS, Butterfield LH (2004) Role of dendritic cell phenotype, determinant spreading, and negative costimulatory blockade in dendritic cell-based melanoma immunotherapy. J Immunother 27(5): 354–367PubMedGoogle Scholar
  151. 151.
    Roland KL, Tinge SA, Killeen KP, Kochi SK (2005) Recent advances in the development of live, attenuated bacterial vectors. Curr Opin Mol Ther 7(1): 62–72PubMedGoogle Scholar
  152. 152.
    Rosenberg SA, Zhai Y, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Seipp CA, Einhorn JH, Roberts B, White DE (1998) Immunizing patients with metastatic melanoma using recombinant adenoviruses encoding MART-1 or gp100 melanoma antigens. J Natl Cancer Inst 90(24): 1894–1900PubMedGoogle Scholar
  153. 153.
    Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Topalian SL, Sherry RM, Restifo NP, Wunderlich JR, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, Gritz L, Panicali DL, White DE (2003) Recombinant fowlpox viruses encoding the anchor-modified gp100 melanoma antigen can generate antitumor immune responses in patients with metastatic melanoma. Clin Cancer Res 9(8): 2973–2980PubMedGoogle Scholar
  154. 154.
    Russell S (2004) CD46: a complement regulator and pathogen receptor that mediates links between innate and acquired immune function. Tissue Antigens 64(2): 111–118PubMedGoogle Scholar
  155. 155.
    Sakai Y, Morrison BJ, Burke JD, Park JM, Terabe M, Janik JE, Forni G, Berzofsky JA, Morris JC (2004) Vaccination by genetically modified dendritic cells expressing a truncated neu oncogene prevents development of breast cancer in transgenic mice. Cancer Res 64(21): 8022–8028PubMedGoogle Scholar
  156. 156.
    Schlesinger S, Dubensky TW (1999) Alphavirus vectors for gene expression and vaccines. Curr Opin Biotechnol 10(5): 434–439PubMedGoogle Scholar
  157. 157.
    Schneeberger A, Luhrs P, Kutil R, Steinlein P, Schild H, Schmidt W, Stingl G (2003) Granulocyte-macrophage colony-stimulating factor-based melanoma cell vaccines immunize syngeneic and allogeneic recipients via host dendritic cells. J Immunol 171(10): 5180–5187PubMedGoogle Scholar
  158. 158.
    Schoen C, Stritzker J, Goebel W, Pilgrim S (2004) Bacteria as DNA vaccine carriers for genetic immunization. Int J Med Microbiol 294(5): 319–335PubMedGoogle Scholar
  159. 159.
    Sewell DA, Douven D, Pan ZK, Rodriguez A, Paterson Y (2004) Regression of HPV-positive tumors treated with a new Listeria monocytogenes vaccine. Arch Otolaryngol Head Neck Surg 130(1): 92–97PubMedGoogle Scholar
  160. 160.
    Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832): 1107–1111PubMedGoogle Scholar
  161. 161.
    Shen Y, Nemunaitis J (2005) Fighting cancer with vaccinia virus: teaching new tricks to an old dog. Mol Ther 11(2): 180–195PubMedGoogle Scholar
  162. 162.
    Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3(11): 807–821PubMedGoogle Scholar
  163. 163.
    Smith CL, Dunbar PR, Mirza F, Palmowski MJ, Shepherd D, Gilbert SC, Coulie P, Schneider J, Hoffman E, Hawkins R, Harris AL, Cerundolo V (2005) Recombinant modified vaccinia Ankara primes functionally activated CTL specific for a melanoma tumor antigen epitope in melanoma patients with a high risk of disease recurrence. Int J Cancer 113(2): 259–266PubMedGoogle Scholar
  164. 164.
    Stanziale SF, Fong Y (2003) Novel approaches to cancer therapy using oncolytic viruses. Curr Mol Med 3(1): 61–71PubMedGoogle Scholar
  165. 165.
    Steiner HH, Bonsanto MM, Beckhove P, Brysch M, Geletneky K, Ahmadi R, Schuele-Freyer R, Kremer P, Ranaie G, Matejic D, Bauer H, Kiessling M, Kunze S, Schirrmacher V, Herold-Mende C (2004) Antitumor vaccination of patients with glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical benefit. J Clin Oncol 22(21): 4272–4281PubMedGoogle Scholar
  166. 166.
    Sutter G, Wyatt LS, Foley PL, Bennink JR, Moss B (1994) A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine 12(11): 1032–1040PubMedGoogle Scholar
  167. 167.
    Taylor GS, Haigh TA, Gudgeon NH, Phelps RJ, Lee SP, Steven NM, Rickinson AB (2004) Dual stimulation of Epstein-Barr Virus (EBV)-specific CD4+- and CD8+-T-cell responses by a chimeric antigen construct: potential therapeutic vaccine for EBV-positive nasopharyngeal carcinoma. J Virol 78(2): 768–778PubMedGoogle Scholar
  168. 168.
    Taylor J, Paoletti E (1988) Fowlpox virus as a vector in non-avian species. Vaccine 6(6): 466–468PubMedGoogle Scholar
  169. 169.
    Terabe M, Berzofsky JA (2004) Immunoregulatory T cells in tumor immunity. Curr Opin Immunol 16(2): 157–162PubMedGoogle Scholar
  170. 170.
    Theys J, Nuyts S, Landuyt W, Van Mellaert L, Dillen C, Bohringer M, Durre P, Lambin P, Anne J (1999) Stable Escherichia coli-Clostridium acetobutylicum shuttle vector for secretion of murine tumor necrosis factor alpha. Appl Environ Microbiol 65(10): 4295–4300PubMedGoogle Scholar
  171. 171.
    Theys J, Landuyt AW, Nuyts S, Van Mellaert L, Lambin P, Anne J (2001) Clostridium as a tumor-specific delivery system of therapeutic proteins. Cancer Detect Prev 25(6): 548–557PubMedGoogle Scholar
  172. 172.
    Theys J, Landuyt W, Nuyts S, Van Mellaert L, Bosmans E, Rijnders A, Van Den Bogaert W, van Oosterom A, Anne J, Lambin P (2001) Improvement of Clostridium tumour targeting vectors evaluated in rat rhabdomyosarcomas. FEMS Immunol Med Microbiol 30(1): 37–41PubMedGoogle Scholar
  173. 173.
    Theys J, Landuyt W, Nuyts S, Van Mellaert L, van Oosterom A, Lambin P, Anne J (2001) Specific targeting of cytosine deaminase to solid tumors by engineered Clostridium acetobutylicum. Cancer Gene Ther 8(4): 294–297PubMedGoogle Scholar
  174. 174.
    Theys J, Barbe S, Landuyt W, Nuyts S, Van Mellaert L, Wouters B, Anne J, Lambin P (2003) Tumor-specific gene delivery using genetically engineered bacteria. Curr Gene Ther 3(3): 207–221PubMedGoogle Scholar
  175. 175.
    Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, Sherry RM, Topalian SL, Yang JC, Stock F, Freezer LJ, Morton KE, Seipp C, Haworth L, Mavroukakis S, White D, MacDonald S, Mao J, Sznol M, Rosenberg SA (2002) Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 20(1): 142–152PubMedGoogle Scholar
  176. 176.
    Triozzi PL, Aldrich W, Allen KO, Lima J, Shaw DR, Strong TV (2005) Antitumor activity of the intratumoral injection of fowlpox vectors expressing a triad of costimulatory molecules and granulocyte/macrophage colony stimulating factor in mesothelioma. Int J Cancer 113(3): 406–414PubMedGoogle Scholar
  177. 177.
    Tsai V, Johnson DE, Rahman A, Wen SF, LaFace D, Philopena J, Nery J, Zepeda M, Maneval DC, Demers GW, Ralston R (2004) Impact of human neutralizing antibodies on antitumor efficacy of an oncolytic adenovirus in a murine model. Clin Cancer Res 10(21): 7199–7206PubMedGoogle Scholar
  178. 178.
    Tsang KY, Zaremba S, Nieroda CA, Zhu MZ, Hamilton JM, Schlom J (1995) Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst 87(13): 982–990PubMedGoogle Scholar
  179. 179.
    Urashima M, Suzuki H, Yuza Y, Akiyama M, Ohno N, Eto Y (2000) An oral CD40 ligand gene therapy against lymphoma using attenuated Salmonella typhimurium. Blood 95(4): 1258–1263PubMedGoogle Scholar
  180. 180.
    Vermorken JB, Claessen AM, van Tinteren H, Gall HE, Ezinga R, Meijer S, Scheper RJ, Meijer CJ, Bloemena E, Ransom JH, Hanna MG, Jr., Pinedo HM (1999) Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet 353(9150): 345–350PubMedGoogle Scholar
  181. 181.
    Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8): 789–799PubMedGoogle Scholar
  182. 182.
    von Mehren M, Arlen P, Tsang KY, Rogatko A, Meropol N, Cooper HS, Davey M, McLaughlin S, Schlom J, Weiner LM (2000) Pilot study of a dual gene recombinant avipox vaccine containing both carcinoembryonic antigen (CEA) and B7.1 transgenes in patients with recurrent CEA-expressing adenocarcinomas. Clin Cancer Res 6(6): 2219–2228Google Scholar
  183. 183.
    Waldmann TA (2003) IL-15 in the life and death of lymphocytes: immunotherapeutic implications. Trends Mol Med 9(12): 517–521PubMedGoogle Scholar
  184. 184.
    Weth R, Christ O, Stevanovic S, Zoller M (2001) Gene delivery by attenuated Salmonella typhimurium: comparing the efficacy of helper versus cytotoxic T cell priming in tumor vaccination. Cancer Gene Ther 8(8): 599–611PubMedGoogle Scholar
  185. 185.
    Wigginton JM, Gruys E, Geiselhart L, Subleski J, Komschlies KL, Park JW, Wiltrout TA, Nagashima K, Back TC, Wiltrout RH (2001) IFN-gamma and Fas/FasL are required for the antitumor and antiangiogenic effects of IL-12/pulse IL-2 therapy. J Clin Invest 108(1): 51–62PubMedGoogle Scholar
  186. 186.
    Wolpoe ME, Lutz ER, Ercolini AM, Murata S, Ivie SE, Garrett ES, Emens LA, Jaffee EM, Reilly RT (2003) HER-2/neu-specific monoclonal antibodies collaborate with HER-2/neu-targeted granulocyte macrophage colony-stimulating factor secreting whole cell vaccination to augment CD8+ T cell effector function and tumor-free survival in Her-2/neu-transgenic mice. J Immunol 171(4): 2161–2169PubMedGoogle Scholar
  187. 187.
    Wooldridge JE, Weiner GJ (2003) CpG DNA and cancer immunotherapy: orchestrating the antitumor immune response. Curr Opin Oncol 15(6): 440–445PubMedGoogle Scholar
  188. 188.
    Xiang R, Lode HN, Chao TH, Ruehlmann JM, Dolman CS, Rodriguez F, Whitton JL, Overwijk WW, Restifo NP, Reisfeld RA (2000) An autologous oral DNA vaccine protects against murine melanoma. Proc Natl Acad Sci U S A 97(10): 5492–5497PubMedGoogle Scholar
  189. 189.
    Xiang R, Primus FJ, Ruehlmann JM, Niethammer AG, Silletti S, Lode HN, Dolman CS, Gillies SD, Reisfeld RA (2001) A dual-function DNA vaccine encoding carcinoembryonic antigen and CD40 ligand trimer induces T cell-mediated protective immunity against colon cancer in carcinoembryonic antigen-transgenic mice. J Immunol 167(8): 4560–4565PubMedGoogle Scholar
  190. 190.
    Xiang R, Silletti S, Lode HN, Dolman CS, Ruehlmann JM, Niethammer AG, Pertl U, Gillies SD, Primus FJ, Reisfeld RA (2001) Protective immunity against human carcinoembryonic antigen (CEA) induced by an oral DNA vaccine in CEA-transgenic mice. Clin Cancer Res 7(3 Suppl): 856s-864sPubMedGoogle Scholar
  191. 191.
    Xiang R, Mizutani N, Luo Y, Chiodoni C, Zhou H, Mizutani M, Ba Y, Becker JC, Reisfeld RA (2005) A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication. Cancer Res 65(2): 553–561PubMedGoogle Scholar
  192. 192.
    Xiang ZQ, Yang Y, Wilson JM, Ertl HC (1996) A replication-defective human adenovirus recombinant serves as a highly efficacious vaccine carrier. Virology 219(1): 220–227PubMedGoogle Scholar
  193. 193.
    Yamanaka R (2004) Alphavirus vectors for cancer gene therapy (review). Int J Oncol 24(4): 919–923PubMedGoogle Scholar
  194. 194.
    Yang AS, Monken CE, Lattime EC (2003) Intratumoral vaccination with vaccinia-expressed tumor antigen and granulocyte macrophage colony-stimulating factor overcomes immunological ignorance to tumor antigen. Cancer Res 63(20): 6956–6961PubMedGoogle Scholar
  195. 195.
    Yang S, Hodge JW, Grosenbach DW, Schlom J (2005) Vaccines with Enhanced Costimulation Maintain High Avidity Memory CTL. J Immunol 175(6): 3715–3723PubMedGoogle Scholar
  196. 196.
    Yang S, Tsang KY, Schlom J (2005) Induction of higher-avidity human CTLs by vector-mediated enhanced costimulation of antigen-presenting cells. Clin Cancer Res 11(15): 5603–5615PubMedGoogle Scholar
  197. 197.
    Zajac P, Oertli D, Marti W, Adamina M, Bolli M, Guller U, Noppen C, Padovan E, Schultz-Thater E, Heberer M, Spagnoli G (2003) Phase I/II clinical trial of a nonreplicative vaccinia virus expressing multiple HLA-A0201-restricted tumor-associated epitopes and costimulatory molecules in metastatic melanoma patients. Hum Gene Ther 14(16): 1497–1510PubMedGoogle Scholar
  198. 198.
    Zaloudik J, Li W, Jacob L, Kieny MP, Somasundaram R, Acres B, Song H, Zhang T, Li J, Herlyn D (2002) Inhibition of tumor growth by recombinant vaccinia virus expressing GA733/CO17–1A/ EpCAM/KSA/KS1–4 antigen in mice. Cancer Gene Ther 9(4): 382–389PubMedGoogle Scholar
  199. 199.
    Zeytin HE, Patel AC, Rogers CJ, Canter D, Hursting SD, Schlom J, Greiner JW (2004) Combination of a poxvirus-based vaccine with a cyclooxygenase-2 inhibitor (celecoxib) elicits antitumor immunity and long-term survival in CEA.Tg/MIN mice. Cancer Res 64(10): 3668–3678PubMedGoogle Scholar
  200. 200.
    Zhang WW (1999) Development and application of adenoviral vectors for gene therapy of cancer. Cancer Gene Ther 6(2): 113–138PubMedGoogle Scholar
  201. 201.
    Zoller M, Christ O (2001) Prophylactic tumor vaccination: comparison of effector mechanisms initiated by protein versus DNA vaccination. J Immunol 166(5): 3440–3450PubMedGoogle Scholar
  202. 202.
    Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5(4): 263–274PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Douglas W. Grosenbach
    • 1
  • Jarett Feldman
    • 1
  • Jeffrey Schlom
    • 2
  • Scott I. Abrams
    • 3
  1. 1.Laboratory of Tumor Immunology and Biology, CCR, NCI, NIHBethesdaUSA
  2. 2.Laboratory of Tumor Immunology and Biology, CCR, NCI, NIHBethesdaUSA
  3. 3.Laboratory of Tumor Immunology and Biology, CCR, NCI, NIHBethesdaUSA

Personalised recommendations