Skip to main content

J-Matrix Green’s Operators and Solving Faddeev Integral Equations for Coulombic Systems

  • Chapter
The J-Matrix Method
  • 660 Accesses

Abstract

The two-body Coulomb Hamiltonian, in the Coulomb-Sturmian basis, has an infinite symmetric tridiagonal (Jacobi) matrix structure. This allows us to construct the Green’s operator in terms of 2F1 hypergeometric function, which can be evaluated by a continued fraction. Using this two-body Coulomb Green’s matrix, we developed an approximation method for solving Faddeev-type integral equations of the three-body Coulomb problem. The corresponding three-body Green’s operators are calculated as a convolution integral of the two-body Coulomb Green’s operators. As examples, the electron-hydrogen scattering and the resonances of the e-Ps system are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. J. Heller and H. A. Yamani, Phys. Rev. A 9, 1201 (1974); ibid. 9, 1209 (1974); H. A. Yamani and L. Fishman, J. Math. Phys. 16, 410 (1975).

    Article  ADS  Google Scholar 

  2. E. J. Heller, Phys. Rev. A 12, 1222 (1975).

    Article  ADS  Google Scholar 

  3. J. Révai, JINR Preprint E4-9429, Dubna, (1975).

    Google Scholar 

  4. F. A. Gareev, M. Ch. Gizzatkulov and J. Révai, Nucl. Phys. A 286, 512 (1977); E. Truhlik, Nucl. Phys. A 296, 134 (1978); F. A. Gareev, S. N. Ershov, J. Révai, J. Bang and B. S. Nillsson, Phys. Scripta 19, 509 (1979); B. Gyarmati, A. T. Kruppa and J. Révai, Nucl. Phys. A 326, 119 (1979); B. Gyarmati and A. T. Kruppa, Nucl. Phys. A 378, 407 (1982); B. Gyarmati and A. T. Kruppa, Z. Papp and G. Wolf, Nucl. Phys. A 417, 393 (1984); A. T. Kruppa and Z. Papp, Comp. Phys. Comm. 36, 59 (1985); J. Révai, M. Sotona and J. Žofka, J. Phys. G: Nucl. Phys. 11, 745 (1985); K. F. Pál, J. Phys. A: Math. Gen. 18, 1665 (1985).

    Google Scholar 

  5. Z. Papp, J. Phys. A 20, 153 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  6. Z. Papp, Phys. Rev. C 38, 2457 (1988).

    Article  ADS  Google Scholar 

  7. Z. Papp, Phys. Rev. A 46, 4437 (1992).

    Article  ADS  Google Scholar 

  8. Z. Papp, Comp. Phys. Comm. 70, 426 (1992); ibid. 70, 435 (1992).

    Article  ADS  Google Scholar 

  9. Z. Papp and W. Plessas, Phys. Rev. C, 54, 50 (1996); Z. Papp, Few-Body Syst., 24, 263 (1998).

    Article  ADS  Google Scholar 

  10. Z. Papp, Phys. Rev. C, 55, 1080 (1997).

    Article  ADS  Google Scholar 

  11. Z. Papp, J. Darai, C-.Y. Hu, Z. T. Hlousek, B. Kónya and S. L. Yakovlev, Phys. Rev. A 65, 032725 (2002).

    Article  ADS  Google Scholar 

  12. Z. Papp, J. Darai, A. Nishimura, Z. T. Hlousek, C-.Y. Hu and S. L. Yakovlev, Phys. Lett. A 304, 36–42 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Z. Papp, J. Darai, J. Zs. Mezei, Z. T. Hlousek and C-.Y. Hu, Phys. Rev. Lett. 94, 243201 (2005).

    Article  Google Scholar 

  14. J. Zs. Mezei and Z. Papp, Phys. Rev. A 73, 030701(R) (2006).

    Article  ADS  Google Scholar 

  15. Z. Papp, C.-Y. Hu, Z. T. Hlousek, B. Kónya and S. L. Yakovlev, Phys. Rev. A 63, 062721 (2001).

    Article  ADS  Google Scholar 

  16. M. Rotenberg, Ann. Phys. (N.Y.) 19, 262 (1962); M. Rotenberg, Adv. At. Mol. Phys. 6, 233 (1970).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).

    Google Scholar 

  18. L. Lorentzen and H. Waadeland, Continued Fractions with Applications (Noth-Holland, Amsterdam, 1992), p. 296.

    Google Scholar 

  19. P. Rózsa, Linear Algebra and Its Applications, (in Hungarian) M!szaki Könyvkiadó, Budapest (1976).

    Google Scholar 

  20. W. B. Jones and W. J. Thron, Continued Fractions: Analytic Theory and Applications (Addison-Wesley, Reading, 1980).

    Google Scholar 

  21. B. Kónya, G. Lévai and Z. Papp, J. Math. Phys. 38, 4832 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. B. Kónya, G. Lévai and Z. Papp, Phys. Rev. C 61, 034302 (2000).

    Article  ADS  Google Scholar 

  23. F. Demir, Z. T. Hlousek and Z. Papp, Phys. Rev. A 74, 014701 (2006).

    Article  ADS  Google Scholar 

  24. S.K. Adhikari and L. Tomio, Phys. Rev. C, 36, 1275 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Darai, B. Gyarmati, B. Kónya and Z. Papp, Phys. Rev. C 63, 057001 (2001).

    Article  ADS  Google Scholar 

  26. R. G. Newton, Scattering Theory of Waves and Particles (Springer, New York, 1982).

    MATH  Google Scholar 

  27. L. D. Faddeev and S. P. Merkuriev, Quantum Scattering Theory for Several Particle Systems, (Kluwer, Dordrecht, 1993).

    MATH  Google Scholar 

  28. S. P. Merkuriev, Ann. Phys. NY, 130, 395 (1980).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. J. Noble, Phys. Rev. 161, 945 (1967).

    Article  ADS  Google Scholar 

  30. Z. Papp, C.-Y. Hu, Phys. Rev. A 66, 052714 (2002).

    Google Scholar 

  31. R. Balian and E. Brézin, Nuovo Cim. B 2, 403 (1969).

    Article  ADS  Google Scholar 

  32. W. Sandhas, Few-Body Nuclear Physics, (IAEA Vienna), 3 (1978).

    Google Scholar 

  33. C. Schwartz, Phys. Rev. 124, 553 (1961).

    Google Scholar 

  34. T. Scholz, P. Scott and P. G. Burke, J. Phys. B: At. Mol. Opt. Phys. 21, L139 (1988).

    Google Scholar 

  35. J. Botero and J. Shertzer, Phys. Rev. A 46, R1155 (1992).

    Google Scholar 

  36. Y. D. Wang and J. Callaway, Phys. Rev. A 48, 2058 (1993); Phys. Rev. A 50, 2327 (1994).

    Google Scholar 

  37. A. A. Kvitsinsky, A. Wu and C.-Y. Hu, J. Phys. B: At. Mol. Opt. Phys. 28 275 (1995).

    Google Scholar 

  38. Y. K. Ho, Phys. Lett., 102A, 348 (1984).

    ADS  Google Scholar 

  39. T. Li and R. Shakeshaft, Phys. Rev. A, 71, 052505 (2005).

    Google Scholar 

  40. V. Efimov, Phys. Lett. 33 B, 563 (1970).

    ADS  Google Scholar 

  41. P. Doleschall, I. Borbély, Z. Papp and W. Plessas, Phys. Rev. C 67, 064005 (2003).

    Article  ADS  Google Scholar 

  42. P. Doleschall and Z. Papp, Phys. Rev. C 67, 064005 (2003).

    Article  ADS  Google Scholar 

  43. Z. Papp, Few-Body Syst. 26 99–103 (1999); Z. Papp, A. Krassnigg and W. Plessas, Phys. Rev. C 62, 044004 (2000).

    Google Scholar 

  44. E. Kelbert, A. Hyder, F. Demir, Z. T. Hlousek and Z. Papp, J. Phys. A: Math. Theor. 40, 7721 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Papp, Z. (2008). J-Matrix Green’s Operators and Solving Faddeev Integral Equations for Coulombic Systems. In: Alhaidari, A.D., Yamani, H.A., Heller, E.J., Abdelmonem, M.S. (eds) The J-Matrix Method. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6073-1_9

Download citation

Publish with us

Policies and ethics