Skip to main content

The J-Matrix Method: A Universal Approach to Description of Ionization of Atoms

  • Chapter
The J-Matrix Method

Abstract

A version of the J-matrix method for solving numerically the three-body Faddeev-Merkuriev differential equations is proposed. This method allows to obtain the correlated three charged particle continuum wave function in which two-body subdomains are considered correctly. This function is used for calculations of the fully resolved absolute differential cross sections for double ionization of helium by electron impact. Results are rather close to the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. A. Kheifets, I. Bray, A. Lahmam-Bennani, A. Duguet, and I. Taouil, J. Phys. B 32, 5047 (1999).

    Article  ADS  Google Scholar 

  2. A. Lahmam-Bennani, I. Taouil, A. Duguet, M. Lecas, L. Avaldi, and J. Berakdar, Phys. Rev. A 59, 3548 (1999).

    Article  ADS  Google Scholar 

  3. H. Klar, Z. Phys. D 16, 231 (1990).

    Article  ADS  Google Scholar 

  4. S. Jones, D. H. Madison, Phys. Rev. Lett. 91, 073201 (2003).

    Article  ADS  Google Scholar 

  5. L. U. Ancarani, T. Montagnese, and C. Dal Cappello, Phys. Rev. A 70, 012711 (2004).

    Google Scholar 

  6. O. Chuluunbaatar, I. V. Puzynin, P. S. Vinitsky, Yu. V. Popov, K. A. Kouzakov, and C. Dal Cappello, Phys. Rev. A 74, 014703 (2006).

    Google Scholar 

  7. J. Berakdar, Phys. Rev. A 53, 2314 (1996); sl ibid54, 1480 (1996).

    Article  ADS  Google Scholar 

  8. G. Gasaneo, F. D. Colavecchia, and C. R. Garibotti, Phys. Rev. A 55, 2809 (1997).

    Article  ADS  Google Scholar 

  9. G. Gasaneo, F. D. Colavecchia, Nucl. Instrum. Methods. Phys. Res. B 192, 150 (2002).

    Article  ADS  Google Scholar 

  10. A. S. Kadyrov, A. M. Mukhamedzhanov, A. T. Steblovics, I. Bray, and F. Pirlepesov, Phys. Rev. A 68, 022703 (2003).

    Article  ADS  Google Scholar 

  11. A. M. Mukhamedzhanov, A. S. Kadyrov, and F. Pirlepesov, Phys. Rev. A 73, 012713 (2006).

    Article  ADS  Google Scholar 

  12. A. S. Kadyrov, A. M. Mukhamedzhanov, A. T. Steblovics, and I. Bray, Phys. Rev. A 70, 062703 (2004).

    Article  ADS  Google Scholar 

  13. L. M. Delves, Nucl.Phys. 9, 391 (1959); F. T. Smith, Phys.Rev. 140, 1058 (1960).

    Google Scholar 

  14. H. S. W. Massey, Rev. Mod. Phys. 28, 199 (1956).

    Article  MATH  ADS  Google Scholar 

  15. P. G. Burke, D. F. Callaher, and S. Geltman. J. Phys. B 2, 1142 (1969).

    Article  ADS  Google Scholar 

  16. I. Bray, Phys. Rev. A 49, 1066 (1994); D. V. Fursa, I. Bray, J. Phys. B 30, 5895 (1997).

    Google Scholar 

  17. V.A. Knyr, L.Ya. Stotland, Phys. Atomic Nuclei 59, 575 (1996).

    Google Scholar 

  18. S. A. Zaytsev, V. A. Knyr, Yu. V. Popov, and A. Lahmam-Bennani, Phys. Rev. A 75, 022718 (2007).

    Article  ADS  Google Scholar 

  19. Z. Papp, C. -Y. Hu, Z. T. Hlousek, B. Konya, and S. L. Yakovlev, Phys. Rev. A 63, 062721 (2001).

    Google Scholar 

  20. B. Konya, G. Levai, and Z. Papp, Phys. Rev. C 61, 034302 (2000).

    Article  ADS  Google Scholar 

  21. L. D. Faddeev, S. P. Merkuriev. Quantum Scattering Theory for Several Particle Systems, (Kluwer Academic Publishers, Dordrecht, 1993).

    MATH  Google Scholar 

  22. Z. Papp, Phys. Rev. C 55, 1080 (1997).

    Article  ADS  Google Scholar 

  23. A. A. Kvitsinsky, A. Wu, and C.-Yu Hu, J. Phys. B 28, 275 (1995).

    Google Scholar 

  24. E. J. Heller, H. A. Yamani, Phys. Rev. A 9, 1201 (1974); H. A. Yamani, L. Fishman, J. Math. Phys. 16, 410 (1975).

    Google Scholar 

  25. A. Kheifets, I. Bray, Phys. Rev. A 69, 050701(R) (2004).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Knyr, V., Zaytsev, S., Popov, Y., Lahmam-Bennani, A. (2008). The J-Matrix Method: A Universal Approach to Description of Ionization of Atoms. In: Alhaidari, A.D., Yamani, H.A., Heller, E.J., Abdelmonem, M.S. (eds) The J-Matrix Method. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6073-1_8

Download citation

Publish with us

Policies and ethics