Skip to main content

J-Matrix and Isolated States

  • Chapter
The J-Matrix Method
  • 660 Accesses

Abstract

We show that a quantum system with nonlocal interaction can have bound states of unusual type—Isolated States (IS). IS is a bound state that is not in correspondence with the S-matrix pole. IS can have a positive as well as a negative energy and can be treated as a generalization of the bound states embedded in continuum on the case of discrete spectrum states. The formation of IS in the spectrum of a quantum system is studied using a simple rank–2 separable potential with harmonic oscillator form factors. Some physical applications are discussed, in particular, we propose a separable NN potential supporting IS that describes the deuteron binding energy and the s-wave triplet and singlet scattering phase shifts. We use this potential to examine the so-called problem of the three-body bound state collapse discussed in literature. We show that the variation of the two-body IS energy causes drastic changes of the binding energy and of the spectrum of excited states of the three-nucleon system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. V. von Neumann and E. Wigner, Phys. Z. 30, 465 (1929).

    Google Scholar 

  2. B. Mulligan, L. G. Arnold, B. Bagchi, and T. O. Krause,Phys. Rev. C 13, 2131 (1976); B. Bagchi, T. O. Krause, and B. Mulligan, Phys. Rev. C 15, 1623 (1977).

    ADS  MathSciNet  Google Scholar 

  3. R. G. Newton, Scattering Theory of Waves and Particles, 2nd. ed. (Springer-Verlag, New York, 1982).

    MATH  Google Scholar 

  4. L. Fonda and R. G. Newton, Ann. Phys. (NY) 10,490 (1960).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. H. Friedrich and D. Wintgen, Phys. Rev. A 31, 3964 (1985); Phys. Rev. A 33, 3231 (1985).

    ADS  Google Scholar 

  6. L. S. Cederbaum, R. S. Friedman, V. M. Ryaboy, and N. Moiseyev, Phys. Rev. Lett. 90, 013001 (2003).

    Article  ADS  Google Scholar 

  7. M. Grupp, G. Nandi, R. Walser, and W. P. Schleich,Phys. Rev. A 73, 050701 (2006).

    ADS  Google Scholar 

  8. F. Tabakin, Phys. Rev. 174, 1208 (1968).

    Article  ADS  Google Scholar 

  9. J. E. Beam, Phys. Lett. B 30, 67 (1969).

    ADS  Google Scholar 

  10. V. A. Alessandrini and C. A. Garcia Canal, Nucl. PhysA 133, 950 (1969).

    Google Scholar 

  11. S. Sofianos, N. J. McGurk, and H. Fiedeldey, Z. Phys. A 286, 87 (1978); G. Pantis, H. Fiedeldey, and D. W. L. Sprung, Z. Phys. A 291, 367 (1979); 294, 101 (1980).

    Google Scholar 

  12. G. Rupp, L. Streit, and J. A. Tjon, Phys. Rev. C 31, 2285 (1985).

    ADS  MathSciNet  Google Scholar 

  13. A. Delfino, S. K. Adhikari, L. Tomio, and T. Federico, Phys. Rev. C 46, 471 (1992).

    ADS  Google Scholar 

  14. A. Delfino, S. K. Adhikari, L. Tomio, and T. Federico, Phys. Rev. C 46, 1612 (1992).

    ADS  Google Scholar 

  15. S. Nakaichi-Maeda, Phys. Rev. C 51, 1633 (1995).

    Google Scholar 

  16. G. Pantis, I. E. Lagaris, and S. A. Sofianos, Phys. Rev. C 63, 044009 (2001).

    ADS  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-relativistic Theory (Pergamon Press,Oxford, New York, 1977).

    Google Scholar 

  18. L. A. Roriz and A. Delfino, Canad. J. Phys. 67, 37(1989).

    ADS  Google Scholar 

  19. H. A. Yamani and L. Fishman, J. Math. Phys. 16, 410(1975).

    Article  ADS  Google Scholar 

  20. Yu. L. Dorodnykh, V. G. Neudatchin, and N. P. Yudin, Yad.Fiz. [Sov. J. Nucl. Phys.] 48, 1796 (1988).

    Google Scholar 

  21. B. N. Zakhariev and A. A. Suzko A.A., Direct and Inverse Problems (Springer, Heidelberg, 1990).

    Google Scholar 

  22. Yu. A. Lurie and A. M. Shirokov, Ann. Phys. (NY) 312, 284 (2004); see also contribution to this volume.

    Article  MATH  ADS  Google Scholar 

  23. A. M. Shirokov, A. I. Mazur, S. A. Zaytsev, J. P. Vary, and T. A. Weber, Phys. Rev. C 70, 044005 (2004);see also contribution to this volume.

    ADS  Google Scholar 

  24. M. Dubovoy and J. Flores, Revista Mex. Fiz. 17, 289(1968).

    Google Scholar 

  25. L. Majling, J. Rizek, and Z. Pluhar, Bull. Acad. Sci.USSR, Phys. ser. 38, 2141 (1974).

    Google Scholar 

  26. V. I. Kukulin, V. N. Pomerantsev, Kh. D. Razikov, V. T. Voronchev,and G. G. Ryzhikh, Nucl. Phys. A 586, 151 (1995).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shirokov, A., Zaytsev, S. (2008). J-Matrix and Isolated States. In: Alhaidari, A.D., Yamani, H.A., Heller, E.J., Abdelmonem, M.S. (eds) The J-Matrix Method. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6073-1_6

Download citation

Publish with us

Policies and ethics