Advertisement

Genetic relationships among Chickpea (Cicer arietinum L.) genotypes based on the SSRs at the quantitative trait Loci for resistance to Ascochyta Blight

  • B. Tar’an
  • T. Warkentin
  • A. Tullu
  • A. Vandenberg
Full Research Paper

Abstract

Breeding for resistance to ascochyta blight in chickpea has been challenged by several factors including the limited sources of good resistance. Characterization of a set of genotypes that may contain different genes for resistance may help breeders to develop better and more durable resistance compared to current cultivars. The objective of this study was to evaluate the genetic relationships of 37 chickpea germplasm accessions differing in reaction to ascochyta blight using Simple Sequence Repeat (SSR) markers linked to Quantitative Trait Loci (QTL) for resistance. The results demonstrated that ILC72 and ILC3279, landraces from the former Soviet Union, had SSR alleles that were common among the kabuli breeding lines and cultivars. A lower SSR allele diversity was found on LG4 than on other regions. No correlation was found between the dendrogram derived using SSRs at the QTL regions and the SSRs derived from other parts of the genome. The clustering based on 127 alleles of 17 SSRs associated with the QTL for ascochyta blight resistance enabled us to differentiate three major groups within the current germplasm accessions. The first group was the desi germplasm originating from India and cultivars derived from it. The second group was a mix of desi genotypes originating from India and Greece, and kabuli breeding lines from ICARDA and the University of Saskatchewan. The third and largest group consisted of landraces originating mostly from the former Soviet Union and breeding lines/cultivars of the kabuli type. Several moderately resistance genotypes that are distantly related were identified. Disease evaluation on three test populations suggested that it is possible to enhance the level of resistance by crossing moderately resistant parents with distinct genetic backgrounds at the QTL for resistance to ascochyta blight.

Keywords

Chickpea Ascochyta blight resistance Quantitative Trait Loci (QTL) Simple Sequence Repeat (SSR) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acikgoz, N., Karaca, M., Er, C., & Meyveci, K. (1994). Chickpea and lentil production in Turkey. In F. J. Muehlbauer & W. J. Kaiser (Eds.), Expanding the production and use of cool season food legumes (pp. 388–398). Dordrecht, The Netherlands: Kluwer Academic PublishersGoogle Scholar
  2. Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32, 314–331.PubMedGoogle Scholar
  3. Chen, W., Coyne, C. J., Peever, T. L., & Muehlbauer, F. J. (2004). Characterization of chickpea differentials for pathogenicity assay of ascochyta blight and identification of chickpea accessions resistant to Didymella rabiei. Plant Pathology, 53, 759–769.CrossRefGoogle Scholar
  4. Cho, S., Chen, W., & Muehlbauer, F. J. (2004). Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theoretical and Applied Genetics, 109, 733–739.PubMedCrossRefGoogle Scholar
  5. Chongo, G., Gossen, B. D., Buchwaldt, L., Adhikari, T., & Rimmer, S. R. (2004). Genetic diversity of Ascochyta rabiei in Canada. Plant Disease, 88, 4–10.CrossRefGoogle Scholar
  6. Crino, P. (1990). Chickpea breeding for resistance to ascochyta blight. Options Méditerranéennes, 9, 55–60.Google Scholar
  7. Doyle, J., & Doyle, J. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.Google Scholar
  8. Falconer, D. S. (1989). Introduction to quantitative genetics. (3rd ed.). UK: Longman Scientific and Technical.Google Scholar
  9. Flandez-Galvez, H., Ades, P. K., Ford, R., Pang, E. C. K., & Taylor, P. W. J. (2003). QTL analysis for ascochyta blight resistance in an intraspecific population of chickpea (Cicer arietinum L.). Theoretical and Applied Genetics, 107, 1257–1265.PubMedCrossRefGoogle Scholar
  10. Iruela, M., Rubio, J., Barro, F., Cubero, J. I., Millan, T., & Gil, J. (2006). Detection of two QTL for resistance to ascochyta blight in an intraspecific cross of chickpea (Cicer arietinum L.): Development of SCAR markers associated to resistance. Theoretical and Applied Genetics, 112, 278–287.PubMedCrossRefGoogle Scholar
  11. Khan, M. S. A., Ramsey, M. D., Corbiere, R., Infantino, A., Porta-Puglia, A., Bouznad, Z., & Scott, E. S. (1999). Ascochyta blight of chickpea in Australia: identification, pathogenicity and mating type. Plant Pathology, 48, 230–234.CrossRefGoogle Scholar
  12. Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209–220.PubMedGoogle Scholar
  13. McCartney, C. A., Somers, D. J., Fedak, G., & Cao, W. (2004). Haplotype diversity at fusarium head blight resistance QTLs in wheat. Theoretical and Applied Genetics, 109, 261–271.PubMedCrossRefGoogle Scholar
  14. Millan, T., Rubio, J., Iruela, M., Daly, K., Cubero, J. I., & Gil, J. (2003). Markers associated with ascochyta blight resistance in chickpea and their potential in marker-assisted selection. Field Crops Research, 84, 373–384.CrossRefGoogle Scholar
  15. Muehlbauer, F. J., Temple, S. R., & Chen, W. (2004). Registration of ‘Sierra’ chickpea. Crop Science, 38, 282.Google Scholar
  16. Muehlbauer, F. J., & Kaiser, W. J. (2002). Registration of ‘Evans’ chickpea. Crop Science, 42, 301.CrossRefGoogle Scholar
  17. Muehlbauer, F. J., Kaiser, W. J., & Kusmenoglu, I. (1998). Registration of ‘Sanford’ chickpea. Crop Science, 38, 282.Google Scholar
  18. Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonuclease. Proceedings of National Academy of Sciences of the United States of America, 79, 5269–5273.CrossRefGoogle Scholar
  19. Nene, Y. L., & Reddy, M. V. (1987). Chickpea diseases and their control. In M. C. Saxena & K. B. Singh (Eds.), The chickpea (pp. 233–270). UK: CAB International.Google Scholar
  20. Reddy, M. V., & Singh, K. B. (1992). Registration of five chickpea germplasm lines resistant to ascochyta blight. Crop Science, 32, 1079–1080.CrossRefGoogle Scholar
  21. Rohlf, F. J. (1998). NTSYSpc: Numerical taxonomy and multivariate analysis system version 2.02 g. Setauket, New York: Exeter Software.Google Scholar
  22. Rubio, J., Martinez, C., Gil, J., & Moreno, M. T. (2004). Registration of ascochyta blight and fusarium wilt resistant CA2954 kabuli chickpea germplasm. Crop Science, 44, 1881–1882.CrossRefGoogle Scholar
  23. Santra, D. K., Tekeoglu, M., Ratnaparkhe, M.-L., Kaiser, W. J., & Muehlbauer, F. J. (2000). Identification and mapping of QTLs conferring resistance to Ascochyta blight in chickpea. Crop Science, 40, 1606–1612.CrossRefGoogle Scholar
  24. SAS Institute Inc. (1999). SAS language and procedure: Usage version 8–2. (North Carolina, USA).Google Scholar
  25. Singh, K. B., & Reddy, M. V. (1993). Resistance to six races of Ascochyta rabiei in the world germplasm collection of chickpea. Crop Science, 33, 186–189.CrossRefGoogle Scholar
  26. Singh, K. B., Malhotra, R. S., & Saxena, M. C. (1993). Registration of ILC72 chickpea. Crop Science, 33, 1409.Google Scholar
  27. Singh, K. B., Malhotra, R. S., & Saxena, M. C. (1992). Registration of ILC3279 chickpea. Crop Science, 32, 826–827.Google Scholar
  28. Tar’an, B., Warkentin, T. D., Tullu, A., & Vandenberg, A. (2007). Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using an SSR linkage map. Genome, (in press)..Google Scholar
  29. Tekeoglu, M., Rajesh, P. N., & Muehlbauer, F. J. (2002). Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theoretical and Applied Genetics, 105, 847–854.PubMedCrossRefGoogle Scholar
  30. Tekeoglu, M., Santra, D. K., Kaiser, W. J., & Muehlbauer, F. J. (2000). Ascochyta blight resistance inheritance in three chickpea recombinant inbred line populations. Crop Science, 40, 1251–1256.CrossRefGoogle Scholar
  31. Udupa, S. M., & Baum, M. (2003). Genetic dissection of pathotype-specific resistance to ascochyta blight resistance in chickpea (Cicer arietinum L.) using microsatellite markers. Theoretical and Applied Genetics, 106, 1196–1202.PubMedGoogle Scholar
  32. Udupa, S. M., Weigand, F., Saxena, M. C., & Kahl, G. (1998). Genotyping with RAPD and microsatellite markers resolves pathotype diversity in the ascochyta blight pathogen of chickpea. Theoretical and Applied Genetics, 97, 299–307.CrossRefGoogle Scholar
  33. Winter, P., Benko-Iseppon, A. M., Hüttel, B., Ratnaparkhe, M., Tullu, A., Sonnante, G., Pfaff, T., Tekeoglu, M., Santra, D., Sant, V. J., Rajesh, P. N., Kahl, G., & Muehlbauer, F. J. (2000). A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum × C. reticulatum cross: localization of resistance genes for fusarium wilt races 4 and 5. Theoretical and Applied Genetics, 101, 1155–1160.CrossRefGoogle Scholar
  34. Winter, P., Pfaff, T., Udupa, S. M., Hüttel, B., Sharma, P. C., Sahi, S., Arreguin-Espinoza, R., Weigand, F., Muehlbauer, F. J., & Kahl, G. (1999). Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Molecular and General Genetics, 262, 90–101.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2007

Authors and Affiliations

  • B. Tar’an
    • 1
  • T. Warkentin
    • 1
  • A. Tullu
    • 1
  • A. Vandenberg
    • 1
  1. 1.Crop Development Centre, College of Agriculture and BioresourcesUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations