Advertisement

Integration of Biological Control with other Methods of Nematode Management

  • L. Hildalgo-Diaz
  • B. R. Kerry
Part of the Integrated Management of Plant Pests and Diseases book series (IMPD, volume 2)

Abstract

This chapter describes measures used to improve the performance of biological control agents for nematode management. Suppressive soils have been associated with the continuous cultivation of nematode-susceptible crops, which support increases in the natural enemy community. Soils that become suppressive to nematode pests and the agronomic practices that may destroy such natural control and lead to increased nematode infestations are discussed. Biological control alone is often inadequate to maintain nematode populations below their economic threshold and must be integrated with other management methods. Methods that decrease nematode infestations in soil or increase the activity of microbial agents are reviewed and some examples given where their combination with agents applied to soil have enhanced the efficacy of biological control. There may be problems for growers with the delivery of such integrated control strategies unless they receive adequate support from extension services, which may be absent in many countries. Hence, the exploitation of natural enemies as a source of genes and compounds with anti-nematode properties, which could be used in chemical and genetic interventions may provide alternative approaches for nematode management.

Keywords

Cover Crop Biological Control Agent Organic Amendment Plant Parasitic Nematode Nematode Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahman, J., Johansson, T., Olsson, M., Punt, P. J., van den Hondel, C. A., & Tunlid, A. (2002). Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematoxic activity. Applied and Environmental Microbiology, 68, 3408–3415.PubMedCrossRefGoogle Scholar
  2. Akhtar, M., & Malik, A. (2000). Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: A review. Biosource Technology, 74, 35–47.CrossRefGoogle Scholar
  3. Al-Rehiayani, S., Hafez, S. L., Thornton, M., & Sundararaj, P. (1999). Effects of Pratylenchus neglectus, Bacillus megaterium, and oil radish or rapeseed green manure on reproductive potential of Meloidogyne chitwoodi on potato. Nematropica, 29, 37–49.Google Scholar
  4. Atkins, S. D., Hidaldo-Diaz, L., Kalisz, H., Mauchline, T. H., Hirsch, P. R., & Kerry, B. R. (2003). Development of a new management strategy for the control of root-knot nematodes (Meloidogyne spp.) in organic vegetable production. Pest Management Science, 59, 183–189.PubMedCrossRefGoogle Scholar
  5. Barker, K. R., Pederson, G. A., & Windham, G. L. (Eds.). (1998). Plant and Nematode Interactions. Madison, WI: American Society of Agronomy, Inc. 771 pp.Google Scholar
  6. Bello, A., González, J. A., & Tello, J. C. (1997). La biofumigación como alternativa a la desinfección del suelo. Horticultura Internacional, 17, 41–43.Google Scholar
  7. Bello, A., López-Pérez, J. A., Díaz-Viruliche, L., & Tello, J. (2001). Alternatives to methyl bromide for soil fumigation in Spain. In R. Labrada & L. Fornasari (Eds.), Global report on validated alternatives to the use of methyl bromide for soil fumigation, (Chapter III, pp. 31–42). FAO and UNEP, Rome, Italy.Google Scholar
  8. Bonants, P. J. M., Fitters, P. F. L., Thijs, H., Den Belder, E., Waalwijk, C., & Henfling, J. W. D. M. (1995). A basic serine protease from Paecilomyces lilacinus with biological activity against Meloidogyne hapla eggs. Microbiology, 141, 775–784.PubMedGoogle Scholar
  9. Bourne, J. M., Kerry, B. R., & De Leij, F. A. A. M. (1996). The importance of the host plant on the interaction between root-knot nematodes (Meloidogyne spp.) and the nematophagous fungus, Verticillium chlamydosporium Goddard. Biocontrol Science and Technology, 6, 539–548.CrossRefGoogle Scholar
  10. Castagnone-Sereno, P. (2002). Genetic variability in parthenogenesis root-knot nematodes, Meloidogyne spp., and their ability to overcome plant resistance genes. Nematology, 4, 605–608.CrossRefGoogle Scholar
  11. Ciancio, A. (1995). Density-dependent parasitism of Xiphinema diversicaudatum by Pasteuria penetrans in a naturally infested field. Phytopathology, 85, 144–149.CrossRefGoogle Scholar
  12. Ciancio, A., & Bourijate, M. (1995). Relationship between Pasteuria penetrans infection levels and density of Meloidogyne javanica. Nematologia Mediterranea, 23, 43–49.Google Scholar
  13. Cook, R., & Starr, J. L. (2006). Resistant cultivars. In R. Perry & M. Moens (Eds.), Plant nematology (pp. 370–389). Wallingford, UK: CABI Publishing.Google Scholar
  14. Cooke, R. C. (1962). The ecology of nematode-trapping fungi during decomposition of organic matter in soil. Annals of Applied Biology, 50, 507–513.CrossRefGoogle Scholar
  15. D’Addabbo, T., De Mastro, G., Sasanelli, N., & Di Stefano, Y. (2005). Contro i nematodi: Azione biocida di differenti specie di Brassica spp. sul nematode galligeno Meloidogyne incognita su pomodoro. Colture Protette, 12, 55.Google Scholar
  16. Davies, K. A., Fargette, M., Balla, G., Daudi, A., Duponnois, R., Gowen, S. R., et al. (2001). Cuticle heterogeneity as exhibited by Pasteuria spore attachment is not linked to the phylogeny of parthenogenetic root-knot nematodes (Meloidogyne spp.). Parasitology, 122, 111–120.PubMedCrossRefGoogle Scholar
  17. Davis, R. F., & May, O. L. (2003). Relationships between tolerance and resistance to Meloidogyne incognita in cotton. Journal of Nematology, 35, 411–416.PubMedGoogle Scholar
  18. Davies, K. G., Redden, M., & Pearson, T. K. (1994). Endospore heterogeneity in Pasteuria penetrans related to adhesion to plant-parasitic nematodes. Letters in Applied Microbiology, 19, 370–373.Google Scholar
  19. Devine, K. J., Dunne, C., O’Gara, F., & Jones, P. W. (1999). The influence of in-egg mortality and spontaneous hatching on the decline of Globodera rostochiensis during crop rotation in the absence of the host potato crop in the field. Nematology, 1, 637–645.CrossRefGoogle Scholar
  20. Díaz-Viruliche, L. (2000). Interés fitotécnico de la biofumigación en los suelos cultivados. Tesis en opción al grado de Doctor en Ciencias Agrícolas. Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros Agrónomos, 591 pp.Google Scholar
  21. Duponnois, R., Netscher, C., & Mateille, T. (1997). Effect of the rhizosphere microflora on Pasteuria penetrans parasitizing Meloidogyne graminicola. Nematologia Mediterranea, 25, 99–103.Google Scholar
  22. Fernández, E., & Labrada, R. (1995, 18–21 September). Experiencias en el uso de la solarización en Cuba. In Memorias del Taller Solarización del Suelo (pp. 5–6) Escuela Agrícola Panamericana El Zamorano Honduras.Google Scholar
  23. Gair, R., Mathias, P. L., & Harvey, P. N. (1969). Studies of cereal nematode populations and cereal yields under continuous or intensive culture. Annals of Applied Biology, 63, 503–512.Google Scholar
  24. Germani, G., & Plenchette, C. (2004). Potential of Crotalaria species as green manure crops for the management of pathogenic nematodes and beneficial mycorrhizal fungi. Plant and Soil, 266, 333–342.CrossRefGoogle Scholar
  25. Gomes, C. B., De Freitas, L. G., Ferraz, S., Oliveira, R. D. D. L., & Da Silva, R. V. (2002). Influence of cattle manure content in the substrate on the multiplication of Pasteuria penetrans in tomato. Nematologia Brasileira, 26, 59–65.Google Scholar
  26. Gómez, L., & Rodríguez, M. (2005). Evaluación de un esquema de rotación de cultivos para el manejo de Meloidogyne spp. en sistemas de cultivos protegidos. Revista da Protección Vegetal, 20, 67–69.Google Scholar
  27. Hallmann, J., Rodriguez-Kabana, R., & Kloepper, J. W. (1999). Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biology and Biochemistry, 31, 551–560.CrossRefGoogle Scholar
  28. Haydock, P. P. J., Woods, S. R., Grove, I. G., & Hare, M. C. (2006). Chemical control of nematode. In R. Perry & M. Moens (Eds.), Plant nematology (pp. 392–408). Wallingford, UK: CABI Publishing.Google Scholar
  29. Hoffmann-Hergarten, S., & Sikora, R. A. (1993). Enhancing the biological control efficacy of nematode-trapping fungi towards Heterodera schachtii with green manure. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz – Journal of Plant Diseases and Protection, 100, 170–175.Google Scholar
  30. Insunza, V., Alstrom, S., & Eriksson, K. B. (2002). Root bacteria from nematicidal plants and their biocontrol potential against trichodorid nematodes in potato. Plant and Soil, 241, 271–278.CrossRefGoogle Scholar
  31. Jaffee, B. A. (2002). Soil cages for studying how organic amendments affect nematode-trapping fungi. Applied Soil Ecology, 21, 1–9.CrossRefGoogle Scholar
  32. Jaffee, B. A. (2003). Correlations between most probable number and activity of nematode-trapping fungi. Phytopathology, 93, 1599–1605.CrossRefPubMedGoogle Scholar
  33. Jaffee, B. A. (2004). Do organic amendments enhance the nematode-trapping fungi Dactylellina haptotyla and Arthrobotrys oligospora? Journal of Nematology, 36, 267–275.Google Scholar
  34. Jaffee, B. A., Ferris, H., & Scow, K. M. (1998). Nematode-trapping fungi in organic and conventional cropping systems. Phytopathology, 88, 344–350.CrossRefPubMedGoogle Scholar
  35. Jaffee, B. A., Ferris, H., Stapleton, J. J., Norton, M. V. K., & Muldoon, A. E. (1994). Parasitism of nematodes by the fungus Hirsutella rhossiliensis as affected by certain organic amendments. Journal of Nematology, 26, 152–161.PubMedGoogle Scholar
  36. Jaffee, B., Phillips, R., Muldoon, A., & Mangel, M. (1992). Density-dependent host-pathogen dynamics in soil microcosms. Ecology, 73, 495–506.CrossRefGoogle Scholar
  37. Jansson, H.-B., Dackman, C., & Zuckerman, B. M. (1987). Adhesion and infection of plant parasitic nematodes by the fungus Drechmeria coniospora. Nematologica, 33, 480–487.Google Scholar
  38. Jansson, H.-B., & Nordbring-Hertz, B. (1980). Interactions between nematophagous fungi and plant parasitic nematodes: attraction, induction of trap formation and capture. Nematologica, 26, 383–389.CrossRefGoogle Scholar
  39. Jenkins, N. E., & Grzywacz, D. (2000). Quality control of fungal and viral biocontrol agents – assurance and product performance. Biocontrol Science and Technology, 10, 753–777.CrossRefGoogle Scholar
  40. Kerry, B. R. (1987). Biological control. In R. H. Brown & B. R. Kerry (Eds.), Principles and practice of nematode control in crops (pp 233–263). Sydney, Australia: Academic Press.Google Scholar
  41. Kerry, B. R. (1995). Ecological considerations for the use of the nematophagous fungus Verticillium chlamydosporium to control plant parasitic nematodes. Canadian Journal of Botany, 73, (Suppl. 1), S65–S70.Google Scholar
  42. Kerry, B. R. (2000). Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 38, 423–441.PubMedCrossRefGoogle Scholar
  43. Kerry, B. R. (2001). Exploitation of the nematophagous fungus Verticillium chlamydosporium Goddard for the biological control of root-knot nematodes (Meloidogyne spp.). In T. M. Butt, C. Jackson, & N. Magan (Eds.). Fungi as Biocontrol Agents: Progress, Problems and Potential (pp 155–168). Wallingford, UK: CABI InternationalGoogle Scholar
  44. Kerry, B. R., & Crump, D. H. (1998). The dynamics of the decline of the cereal cyst nematode, Heterodera avenae, in four soils under intensive cereal production. Fundamental and Applied Nematology, 21, 617–625.Google Scholar
  45. Kerry, B. R., & Hidalgo-Díaz, L. (2004). Application of Pochonia chlamydosporia in the integrated control of root-knot nematodes on organically grown vegetable crops in Cuba. In R. Sikora, S. Gowen, R. Hauschild, & S. Kiewinick (Eds.), Multitrophic interactions in soil and integrated control. IOBC/WPRS Bulletin 27, 123–127.Google Scholar
  46. Kerry, B. R., & Hominick, W. M. (2002). Biological control. In D. Lee (Ed.), The biology of nematodes (pp. 483–509). Taylor & Francis, London – New York.Google Scholar
  47. Khan, Z., & Kim, Y. H. (2007). A review of the role of predatory nematodes in the biological control of plant parasitic nematodes. Applied Soil Ecology, 35, 370–379.CrossRefGoogle Scholar
  48. Kiewnick, S., Rumbos, C., & Sikora, R. A. (2004). Risk assessment of fungal biocontrol agents. IOBC/WPRS Bulletin, 27, 137–143.Google Scholar
  49. Kimpinski, J., Arsenault, W. J., Gallant, C. E., & Sanderson, J. B. (2000). The effect of marigolds (Tagete spp.) and other cover crops on Pratylenchus penetrans and on following potato crops. Supplement to the Journal of Nematology, 32 (4S), 531–536.Google Scholar
  50. Kloepper, J. W., Rodriguez-Kabana, R., McInroy, J. A., & Collins, D. J. (1991). Analysis of populations and physiological characterization of microorganisms in rhizospheres of plants with antagonistic properties to phytopathogenic nematodes. Plant and Soil, 136, 95–102.CrossRefGoogle Scholar
  51. Kluepfel, D. A., Nyczepir, A., Lawrence, J. E., Wechter, W. P., & Leverentz, B. (2002). Biological control of the phytoparasitic nematode Mesocriconema xenoplax on peach trees. Journal of Nematology, 34, 120–123.PubMedGoogle Scholar
  52. Koenning, S. R., Barker, K. R., & Bowman, D. T. (2001). Resistance as tactic for management of Meloidogyne incognita on cotton in North Carolina. Journal of Nematology, 33, 126–131.PubMedGoogle Scholar
  53. Kokalis-Burelle, N., Mahaffee, W. F., Rodríguez-Kabana, J., Kloepper, W., & Bowen, K. L. (2002). Effects of switchgrass (Panicum virgatum) rotations with peanut (Arachis hypogaea L.) on nematode populations and soil microflora. Journal of Nematology, 34, 98–105.PubMedGoogle Scholar
  54. Leij de, F. A. A. M., Davies, K. G., & Kerry, B. R. (1992). The use of Verticillium chlamydosporium Goddard and Pasteuria penetrans (Thorne) Sayre & Starr alone and in combination to control Meloidogyne incognita on tomato plants. Fundamental and Applied Nematology, 15, 235–242.Google Scholar
  55. Leij de, F. A. A. M., Kerry, B. R., & Dennehy, J. A. (1993). Verticillium chlamydosporium as a biological control agent for Meloidogyne incognita and M. hapla in pot and micro-plot tests. Nematologica, 39, 115–126.CrossRefGoogle Scholar
  56. Linford, M. B., Yap, F., & Oliveira, J. M. (1938). Reduction of soil populations of the root-knot nematode during decomposition of organic matter. Soil Science, 45, 127–141.CrossRefGoogle Scholar
  57. Lorito, M., Woo, S. L., Garcia Fernandez, I., Colucci, G., Harman, G. E., Pintor-Toro, J. A., et al. (1998). Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proceedings of the National. Academy of Science, USA, 95, 7860–7865.Google Scholar
  58. Luc, M., Sikora, R. A., & Bridge, J. (Eds.). (2005). Plant parasitic nematode in subtropical and tropical agriculture (871 pp). Wallingford, UK: CABI Publishing.Google Scholar
  59. Mauchline, T. H., Kerry, B. R., & Hirsch, P. R. (2004). The biocontrol fungus Pochonia chlamydosporia shows nematode host preference at the infraspecific level. Mycological Research, 108, 161–169.PubMedCrossRefGoogle Scholar
  60. Morton, C. O., Hirsch, P. R., Peberdy, J. P., & Kerry, B. R. (2003). Cloning of and genetic variation in protease VCP1 from the nematophagous fungus Pochonia chlamydosporia. Mycological Research, 107, 38–46.Google Scholar
  61. O’Flaherty, S., Hirsch, P. R., & Kerry, B. R. (2003). The influence of the root-knot nematode Meloidogyne incognita, the nematicide aldicarb and the nematophagous fungus Pochonia chlamydosporia on heterotrophic bacteria in soil and the rhizosphere. European Journal of Soil Science, 54, 759–766.CrossRefGoogle Scholar
  62. Oostendorp, M., Dickson, D. W., & Mitchell, D. J. (1991). Population development of Pasteuria penetrans on Meloidogyne arenaria. Journal of Nematology, 23, 58–64PubMedGoogle Scholar
  63. Oostendorp, M., & Sikora, R. A. (1989). Seed treatment with antagonistic rhizobacteria for the suppression of Heterodera schachtii early root infection of sugar beet. Revue de Nematologie, 12, 77–83.Google Scholar
  64. Perry, R., & Moens, M. (2006). Plant nematology (447 pp.). Wallingford, UK: CABI Publishing.Google Scholar
  65. Peteira, B., Puertas, A., Hidalgo-Díaz, L., Hirsch, P. R., Kerry, B. R., & Atkins, S. D. (2005). Real-time PCR to monitor and assess the efficacy of the nematophagous fungus Pochonia chlamydosporia var. catenulata against root-knot nematode populations in the field. Biotecnología Aplicada, 22, 261–266.Google Scholar
  66. Pinochet, J., Camprubi, A., Calvet, C., Fernandez, C., & Kabana-Rodriquez, R. (1998). Inducing tolerance to the root-lesion nematode Pratylenchus vulnus by early mycorrhizal inoculation of micropropagated myrobalan 20C plum rootstock. Journal of the American Society for Horticultural Science, 1223, 342–347.Google Scholar
  67. Ploeg, A. T., &. Staplenton, J. J. (2001). Glasshouse studies on the effects of time, temperature and amendment of soil with broccoli plant residues on the infestation of melon plants by Meloidogyne incognita and M. javanica. Nematology, 3, 855–861.CrossRefGoogle Scholar
  68. Powell, K. A., & Faull, J. L. (1989). Commercial approaches to the use of biological control agents. In J. M. Whipps & R. D. Lumsden (Eds.), Biotechnology of fungi for improving plant growth (pp. 259–275). Cambridge, UK: Cambridge University Press.Google Scholar
  69. Puertas, A., & Hidalgo-Díaz, L. (2007). Influencia de la planta hospedante y su interacción con Meloidogyne incognita sobre la efectividad de Pochonia chlamydosporia var. catenulata como agente de control biológico. Revista de Protección Vegetal, 22, (in press).Google Scholar
  70. Pyrowolakis, A., Schuster, R.-P., & Sikora, R. A. (1999). Effect of cropping pattern and green manure on the antagonistic potential and the diversity of egg pathogenic fungi in fields with Heterodera schachtii infection. Nematology, 1, 165–171.CrossRefGoogle Scholar
  71. Reddy, P. P., Rao, M. S., & Nagesh, M. (1999). Eco-friendly management of Meloidogyne incognita on tomato by integration of Verticillium chlamydosporium with neem and calotropis leaves. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 106, 530–533.Google Scholar
  72. Rodriguez-Kabana, R., Morgan-Jones, G., & Chet, I. (1987). Biological control of nematodes: soil amendments and microbial antagonists. Plant and Soil, 100, 237–248.CrossRefGoogle Scholar
  73. Rumbos, C. I., & Kiewnick, S. (2006). Effect of plant species on persistence of Paecilomyces lilacinus strain 251 in soil and on root colonization by the fungus. Plant and Soil, 283, 25–51.CrossRefGoogle Scholar
  74. Sano, Z. (2002). Nematode management strategies in East Asian countries. Nematology, 4, 129–130.Google Scholar
  75. Schlang, J., Steudel, W., & Miller, J. (1988). Influence of green manure crops on the population dynamics of Heterodera schachtii and its fungal egg parasites. (Abstract). Nematologica, 34, 293.Google Scholar
  76. Segers, R. (1996). The nematophagous fungus Verticillium chlamydosporium : Aspects of pathogenicity (222 p.). PhD thesis, University of Nottingham.Google Scholar
  77. Segers, R., Butt, T. M., Kerry, B. R., & Peberdy, J. F. (1994). The nematophagous fungus Verticillium chlamydosporium produces a chymoelastase-like protease which hydrolyses host nematode proteins in situ. Microbiology, 140, 2715–2723.Google Scholar
  78. Shaukat, S. S., & Siddiqui, I. A. (2003). Impact of biocontrol agents Pseudomonas fluorescens CHA0 and its genetically modified derivatives on the diversity of culturable fungi in the rhizosphere of mungbean. Journal of Applied Microbiology, 95, 1039–1048.PubMedCrossRefGoogle Scholar
  79. Sikora, R. A. (2001). Use of mutualistic fungal endophytes for biological enhancement of tissue culture derived planting material for the control of fungal wilt and plant parasitic nematodes on banana. Joint Meeting of the American Phytopathological Society, the Mycological Society of America and the Society of Nematologists, Salt Lake City, Utah, USA, Phytopathology, S82.Google Scholar
  80. Sikora, R. A., Bridge, J., & Starr, J. L. (2005). Management practice: an overview of integrated nematode management technologies. In M. Luc, R. A. Sikora, & J. Bridge (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (pp. 793–827). Wallingford, UK: CABI Publishing.Google Scholar
  81. Sorribas, F. J., Ornat, C., Verdejo-Lucas, S., Galeano, M., & Valero, J. (2005). Effectiveness and profitability of the Mi-resistance gene in tomato over three consecutive growing seasons. European Journal of Plant Pathology, 11, 29–38.CrossRefGoogle Scholar
  82. Staplenton, J. J., & Duncan, R. A. (1998). Soil desinfestation with cruciferous amendments and sub-lethal heating effect on Meloidogyne incognita, Sclerotium rolfsii and Pythium ultimum. Plant Pathology, 47, 737–742.Google Scholar
  83. Stefanova, M., & Fernández, E. (1995). Principales Patógenos del Suelo en las Hortalizas y su Control. In R. Labrada (Ed.), Producción Intensiva de Hortalizas en los Trópicos Húmedos (pp. 111–120). División de Producción y Protección Vegetal, FAO, Roma.Google Scholar
  84. Stirling, G. R. (1991). Biological control of plant parasitic nematodes: Progress, Problems and Prospects (282 pp.). Wallingford, UK: CABI International.Google Scholar
  85. Talavera, M., Itou, K., & Mizukubo, T. (2002). Combined application of Glomus sp. and Pasteuria penetrans for reducing Meloidogyne incognita (Tylenchida: Meloidogynidae) populations and improving tomato growth. Applied Entomology and Zoology, 37, 61–67.CrossRefGoogle Scholar
  86. Taba, S., Moromizato, K., Takaesu, Z., Ooshiru, A., & Nasu, K. (2006). Control of the southern root-knot nematode, Meloidogyne incognita using granule formulations containing nematode-trapping fungus, Monacrosporium ellipsosporum and a nematicide. Japanese Journal of Applied Entomolgy and Zoology, 50, 115–122.CrossRefGoogle Scholar
  87. Timper, P. (1999). Effect of crop rotation and nematicide use on abundance of Pasteuria penetrans. Journal of Nematology, 31, 575 (abstract).Google Scholar
  88. Timper, P., & Brodie, B. B. (1994). Effect of host-plant resistance and a nematode pathogenic fungus on Pratylenchus penetrans. Phytopathology, 84, 1090 (abstract).Google Scholar
  89. Timper, P., Minton, N. A., Johnson, A. W., Brenneman, T. B., Culbreath, A. K., Burton, G. W., et al. (2001). Influence of cropping systems on stem rot (Sclerotium rolfsii), Meloidogyne arenaria and the nematode antagonist Pasteuria penetrans in peanut. Plant Disease, 85, 767–772.CrossRefGoogle Scholar
  90. Tzortzakakis, E. A., & Goewn, S. R. (1994). Evaluation of Pasteuria penetrans alone and in combination with oxamyl, plant resistance and solarization for control of Meloidogyne spp. On vegetables grown in greenhouses in Crete. Crop Protection, 13, 455–462.CrossRefGoogle Scholar
  91. Van den Boogert, P. H. J. F., Velvis, H., Ettema, C. H., & Bouwman, L. A. (1994). The role of organic matter in the population dynamics of the endoparasitic nematophagous fungus Drechmeria coniospora in microcosms. Nematologica, 40, 249–257.CrossRefGoogle Scholar
  92. Van Emden, H. F., & Peakall, D. B. (1996). The practice of pest management in developing countries. In H. F. van Emden & D. B. Peakall (Eds.), Beyond silent spring (pp. 167–222). London, UK: Chapman and Hall.Google Scholar
  93. Viaene, N., Coyne, D. L., & Kerry, B. (2006). Biological and cultural management. In R. Perry & M. Moens (Eds.), Plant nematology (pp. 346–369). Wallingford, UK: CABI Publishing.Google Scholar
  94. Walker, G. E., & Wachtel, M. F. (1988). The influence of soil solarization and non-fumigant nematicides on infection of Meloidogyne javanica by Pasteuria penetrans. Nematologica, 34, 477–483.CrossRefGoogle Scholar
  95. Wang, K.-H., Mc Sorley, H. R., & Gallaher, R. N. (2004). Effect of winter cover crops on nematode population levels in north Florida. Journal of Nematology, 36, 517–523.PubMedGoogle Scholar
  96. Wang, K.-H., Sipes, B. S., & Schmitt, D. P. (2002). Crotalaria as a cover crop for nematode management: A review. Nematropica, 32, 35–37.Google Scholar
  97. Whitehead, A. G. (1998). Plant nematode control (384 pp.). Wallinford, UK: CAB International.Google Scholar
  98. Xu, J., Mo, M.-H., Huang, X.-W., & Zhang, K.-Q. (2005). Improvement on genetic transformation in the nematode-trapping fungus Arthrobotrys oligospora and its quantification on dung samples. Mycopathologia, 159, 533–538.CrossRefGoogle Scholar
  99. Yamada, M. (2001). Methods of control of injury associated with continuous vegetables cropping in Japan-crop rotation and several cultural practices. Japan Agricultural Reasearch Quarterly, 35, 39–45.Google Scholar
  100. Zaki, M. J., & Maqbool, M. A. (1991). Combined efficacy of Pasteuria penetrans and other biocontrol agents on the control of root-knot nematode on okra. Pakistan Journal of Nematology, 9, 49–52.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • L. Hildalgo-Diaz
    • 1
  • B. R. Kerry
    • 2
  1. 1.Centro Nacional de Sanidad Agropecuaria (CENSA)La HabanaCuba
  2. 2.Rothamsted ResearchHarpendenHertfordshire, UK

Personalised recommendations