Integrated Approaches for Carrot Pests and Diseases Management

  • R. Michael Davis
  • Joe Nu≁ez
Part of the Integrated Management of Plants Pests and Diseases book series (IMPD, volume 1)


Integrated approaches to the management of the main carrot diseases are reviewed, with particular attention to symptoms and field practices. Diseases caused by bacteria, foliar damages caused by fungi and parasitism by soil-borne fungi are described, together with the most important postharvest diseases. Management aiming at reducing the crop losses and damages induced by viruses, phytoplasmas and nematodes are also discussed.


Powdery Mildew Bacterial Leaf Blight Aster Yellow Cavity Spot Carrot Cultivar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, P. B. (1975). Factors affecting survival of of Sclerotinia sclerotiorum in soil. Plant Disease Reporter, 59, 599-603.Google Scholar
  2. Adams, G. C., & Kropp, B. R. (1996). Athelia arachnoidea, the sexual state of Rhizoctonia carotae, a pathogen of carrot in cold storage. Mycologia, 88, 459-472.CrossRefGoogle Scholar
  3. Angell, F. F., & Gabelman, W. H. (1968). Inheritance of resistance in carrot, Daucus carotae var. sativa, to the leafspot fungus, Cercospora carotae. Journal of the American Society for Horticultural Sciences, 93, 434-437.Google Scholar
  4. Arthur, J. C. (1934). Manual of the Rusts in United States and Canada. Purdue Research Foundation, Lafayette, IN, USA.Google Scholar
  5. Belair, G. 1987. A note on the influence of cultivar, sowing date, and density on damage to carrot caused by Meloidogyne hapla in organic soil. Phytoprotection, 68, 71-74.Google Scholar
  6. Ben-Yephet, Y., Bitton, S., & Greenberger, A. (1986). Control of lettuce drop disease, caused by Sclerotinia sclerotiorum, with metham-sodium soil treatment and foliar applications of benomyl. Plant Pathology, 35, 146-151.CrossRefGoogle Scholar
  7. Ben-Yephet, Y., Genizi, A., & Siti, E. (1993). Sclerotial survival and apothecial production by Sclerotinia sclerotiorum following outbreaks of lettuce drop. Phytopathology, 83, 509-513.CrossRefGoogle Scholar
  8. Braun, U. (1995). The Powdery Mildews (Erysiphales) of Europe. Gustav Fisher Verlag, New York.Google Scholar
  9. Boekhout, T. (1991). Systematics of Itersonilia: a comparative phenetic study. Mycological Research, 2, 135-146.CrossRefGoogle Scholar
  10. Carisse, O., & Kushalappa, A. C. (1990). Development of an infection model for Cercospora carotae on carrot based on temperature and leaf wetness duration. Phytopathology, 80, 1233-1238.CrossRefGoogle Scholar
  11. Channon, A. G. (1963). Studies on parsnip canker. I. The causes of the disease. Annals of Applied Biology, 51, 1-15.CrossRefGoogle Scholar
  12. Constatinescu, O. (1992). The nomenclature of Plasmopara parasitic on Umbelliferae. Mycotaxon 43:471-477.Google Scholar
  13. Dalton, I. P., Epton, A. S., & Bradshaw, N. J. (1981). The susceptibility of modern carrot cultivars to violet root rot caused by Helicobasidium purpureum. Journal of Horticultural Science, 56, 95-96.Google Scholar
  14. Davies, W. P., & Lewis, B. G. (1981). Antifungal activity in carrot roots in relation to storage infection by Mycocentrospora acerina (Hartig) Deighton. New Phytologist, 89, 109-119.CrossRefGoogle Scholar
  15. Davies, W. P., Lewis, B. G., & Day, J. R. (1981). Observations on infection of stored carrot roots by Mycocentrospora acerina. Transactions of the British Mycological Society, 77, 139-151.CrossRefGoogle Scholar
  16. Davis, R. M., & Nuñez, J. J. (1999). Influence of crop rotation on the incidence of Pythium- and Rhizoctonia-induced carrot root dieback. Plant Disease, 83, 146-148.CrossRefGoogle Scholar
  17. Dillard, H. R., Ludwig, J. W., & Hunter, J. E. (1995). Conditioning of sclerotia of Sclerotinia sclerotiorum for carpogenic germination. Plant Disease, 79, 411-415.CrossRefGoogle Scholar
  18. Dowson, W. J. (1934). Phytophthora megasperma Drechsler in Tasmania. Transactions of the British Mycological Society, 19, 89-90.CrossRefGoogle Scholar
  19. Falk, B. W., Davis, R. M., & Piechocki, M. (1991). Identification of carrot thin leaf virus in California carrots. Plant Disease,75, 319.CrossRefGoogle Scholar
  20. Farrar, J. J., Nuñez, J. J., & Davis, R. M. (2000). Influence of soil saturation and temperature on Erwinia chrysanthemi soft rot of carrot. Plant Disease, 84, 665-668.CrossRefGoogle Scholar
  21. Farrar, J. J., Nuñez, J. J., & Davis, R. M. (2002). Repeated soil applications of fungicide reduce activity against cavity spot in carrots. California Agriculture, 56, 76-79.CrossRefGoogle Scholar
  22. Gayed, S. K. (1972). Host range and persistence of Thielaviopsis basicola in tobacco soil. Canadian Journal of Plant Science, 52, 869-873.CrossRefGoogle Scholar
  23. Gillespie, T. J., & Sutton, J. C. (1979). A predictive scheme for timing fungicide applications to control Alternaria leaf blight of carrots. Canadian Journal of Plant Pathology, 1, 95, 99.Google Scholar
  24. Golino, D. A., Oldfield, G. N., & Gumpf, D. J. (1987). Transmission characteristics of the beet leafhopper transmitted virescence agent. Phytopathology, 77, 954-957.CrossRefGoogle Scholar
  25. Goyer, C., & Beaulieu, C. (1997). Host range of Streptomycete strains causing common scab. Plant Disease, 81, 901-904.CrossRefGoogle Scholar
  26. Greco, N., & Brandonisio, A. (1980). Relationship between Heterodera carotae and carrot yield. Nematologica, 26, 497-500.CrossRefGoogle Scholar
  27. Greco, N., & Brandonisio, A. (1986). The biology of Heterodera carotae. Nematologica, 32, 447-460.CrossRefGoogle Scholar
  28. Grisham, M. P., & Anderson, N. A. (1983). Pathogenicity and host specificity of Rhizoctonia solani isolated from carrots. Phytopathology, 73, 1564-1569.CrossRefGoogle Scholar
  29. Groom, M. R., & Perry, D. A. (1985). Induction of cavity spot-like lesions in roots of Daucus carota by Pythium violae. Transactions of the British Mycological Society, 84, 755-757.CrossRefGoogle Scholar
  30. Grove, J. F. (1964). Metabolic products of Stemphylium radicinum. Part I. Radicinin. Journal of the Chemical Society, 1964, 3234-3239.CrossRefGoogle Scholar
  31. Gurkin, R. S., & Jenkins, S. F. (1985). Influence of cultural practices, fungicides, and inoculum placement on southern blight and Rhizoctonia crown rot of carrot. Plant Disease, 69, 477-481.Google Scholar
  32. Hanson, L. E., & Lacy, M. L. (1990). Carrot scab caused by Streptomyces spp. in Michigan. Plant Disease, 74, 1037.CrossRefGoogle Scholar
  33. Hermansen, A. (1992). Weeds as hosts of Mycocentrospora acerina. Ann. Appl. Biol. 121:679-686.CrossRefGoogle Scholar
  34. Ho, H. H. (1983). Phytophthora porri from stored carrots in Alberta. Mycologia, 75, 747-751.CrossRefGoogle Scholar
  35. Howard, R. J., Pratt, R. G., & Williams, P. H. (1978). Pathogenicity to carrots of Pythium species from organic soils of North America. Phytopathology, 68, 1293-1296.CrossRefGoogle Scholar
  36. Howell, W. E., & Mink, G. I. (1976). Host range, purification, and properties of a flexuous rod-shaped virus isolated from carrot. Phytopathology, 66, 949-953.Google Scholar
  37. Hutchinson, C. M., McGiffen, M. E., Ohr, H. D., & Sims, J. J. (1999). Evaluation of methyl iodide as a soil fumigant for root-knot nematode control in carrot production. Plant Disease 83:33-36.CrossRefGoogle Scholar
  38. Jenkins, S. F., & Averre, C. W. (1986). Problems and progress in integrated control of southern blight of vegetables. Plant Disease, 70, 614-619.CrossRefGoogle Scholar
  39. Kendrick, J. B. (1934). Bacterial blight of carrot. Journal of Agricultural Research, 49, 493-510.Google Scholar
  40. Kuan, T. L., Minsavage, G. V., & Gabrielson, R. L. (1985). Detection of Xanthomonas campestris pv. carotae in carrot seed. Plant Disease, 69, 758-760.CrossRefGoogle Scholar
  41. Kushalappa, A. C., Boivin, G., & Brodeur, L. (1989). Forecasting incidence thresholds of Cercospora blight in carrots to initiate fungicide application. Plant Disease, 73, 979-983.CrossRefGoogle Scholar
  42. Kuske, C. R., Kirkpatrick, B. C., Davis, M. J., & Seemuller, E. (1991). DNA hybridization between Western aster yellows mycoplasma-like organism plasmids and extrachromosomal DNA from other plant pathogenic mycoplasma-like organisms. Molecular Plant Microbe Interactions, 4, 75-80.CrossRefGoogle Scholar
  43. Lambert, D. H. (1991). First report of additional hosts for the acid scab pathogen Streptomyces acidiscabies. Plant Disease, 75, 750.CrossRefGoogle Scholar
  44. Langenberg, W. J., Sutton, J. C., & Gillespie, T. J. (1977). Relation of weather variables and periodicities of airborne spores of Alternaria dauci. Phytopathology, 67:879-883.CrossRefGoogle Scholar
  45. Latham L. J., & Jones, R. A. C. (2000). Yield and quality losses in carrots infected with carrot virus Y. Proceedings of Carrot Conference Australia. E. Davison and A. McKay, eds. Perth, Australia.Google Scholar
  46. Lee, I. M., & Davis, R. E. (1988). Detection and investigation of genetic relatedness among aster yellows and other mycoplasma-like organisms by using cloned DNA and RNA probes. Molecular Plant Microbe Interactions, 1, 303-310.CrossRefGoogle Scholar
  47. Lewis, B. G., Davies, W. P., & Garrod, B. (1981). Wound healing in carrot roots in relation to infection by Mycocentrospora acerina. Annals of Applied Biology, 99, 35-42.CrossRefGoogle Scholar
  48. Liddell, C. M., Davis, R. M., Nuñez, J. J., & Guerard, J. P. (1989). Association of Pythium spp. with carrot root dieback in the San Joaquin Valley of California. Plant Disease, 73, 246-249.CrossRefGoogle Scholar
  49. Mahr, S. E. R., Wyman, J. A., & Chapman, R. K. (1993). Variability in aster yellows infectivity of local populations of the aster leafhopper (Homoptera: Cicadelliadae) in Wisconsin. Journal of Economic Entomology, 86, 1522-1526.Google Scholar
  50. Maude, R. B. (1966). Studies on the etiology of black rot, Stemphylium radicinum (Meier, Drechsl., & Eddy) Neerg., and leaf blight, Alternaria dauci (Kuhn) Groves & Skolko, on carrot crops; and on fungicide control of their seed-borne infection phases. Annals of Applied Biology, 57, 83-93.CrossRefGoogle Scholar
  51. Maude, R. B., & Shuring, C. G. (1972). Black rot of carrots. Annual. Report of the National Vegetable Research Station, Warwick, England, pp. 20, 103.Google Scholar
  52. Maude, R. B. (1992). Strategies for control of seed-borne Alternaria dauci (leaf blight) of carrots in priming and process engineering systems. Plant Pathology, 41, 204-214.CrossRefGoogle Scholar
  53. Merriman, P. R., Miriam, P., Harrison, G., & Nancarrow, J. (1979). Survival of sclerotia of Sclerotinia sclerotiorum. Soil Biology and Biochemistry, 11, 567-570.CrossRefGoogle Scholar
  54. Mildenhall, J. P., & Williams, P. H. (1970). Rhizoctonia crown rot and cavity spot of muck-grown carrots. Phytopathology, 60, 887-890.CrossRefGoogle Scholar
  55. Mildenhall, J. P., Pratt, R. G., Williams, P. H., & Mitchell, J. E. (1971). Pythium brown root and forking of muck-grown carrots. Plant Disease Reporter, 55, 536-540.Google Scholar
  56. Mildenhall, J. P., & Williams, P. H. (1973). Effect of soil temperature and host maturity on infection of carrot by Rhizoctonia solani. Phytopathology, 63, 276-280.CrossRefGoogle Scholar
  57. Moran J., Gibbs, A., van Rijswijk, B., Mackenzie, A., Gibbs, M., & Traicevski, V. (1999). Potyviruses in the cultivated and wild Apiaceae in Australia and the implications for disease control. Australasian Plant Pathological Society Conference Handbook. 12th Biennial Conference, Canberra, Australia.Google Scholar
  58. Murant, A. F., Waterhouse, P. M., Raschke, J. H., & Robinson, D. J. (1985). Carrot red leaf and carrot mottle virus: observations on the composition of the particles in single and mixed infections. Journal of General Virology, 66, 1575-1579.CrossRefGoogle Scholar
  59. Neergaard, P., & Newhall, A. G. (1951). Notes of the physiology and pathogenicity of Centrospora acerina (Hartig) Newhall. Phytopathology, 41, 1021-1033.Google Scholar
  60. Palti, J. (1975). Erysiphaceae affecting Umbelliferous crops, with special reference to carrot, in Israel. Phytopathologia Mediterrranea, 14, 87-93.Google Scholar
  61. Perry, D. A. & Harrison, J.G. (1979). Cavity spot of carrots. I. Symptomology and calcium involvement. Annals of Applied Biology, 93, 101-108.CrossRefGoogle Scholar
  62. Pryor, B. M., Davis, R. M., & Gilbertson, R. L. (1994). Detection and eradication of Alternaria radicina on carrot seed. Plant Disease, 78, 452-456.CrossRefGoogle Scholar
  63. Pryor, B. M., Davis, R. M., & Gilbertson, R. L. (1998). Detection of soilborne Alternaria radicina and its occurrence in California carrot fields. Plant Disease, 82, 891-895.CrossRefGoogle Scholar
  64. Pryor, B. M., Davis, R. M., & Gilbertson, R. L. (2000). A toothpick inoculation method for evaluation of carrot cultivars for resistance to Alternaria radicina. HortScience, 35, 1099-1102.Google Scholar
  65. Punja, Z. K. (1985). The biology, ecology, and control of Sclerotium rolfsii. Annual Review of Phytopathology, 23, 97-127.CrossRefGoogle Scholar
  66. Punja, Z. K. (1987). Mycelial growth and pathogenesis by Rhizoctonia carotae on carrot. Canadian Journal of Plant Pathology, 9, 24-31.CrossRefGoogle Scholar
  67. Punja, Z. K., Chittaranjan, S., & Gaye, M. M. (1992). Development of black root rot caused by Chalara elegans on fresh market carrots. Canadian Journal of Plant Pathology, 14, 299-309.CrossRefGoogle Scholar
  68. Punja, Z. K., & Gaye, M. M. (1993). Influence of postharvest handling practices and dip treatments on development of black root rot on fresh market carrots. Plant Disease, 77, 989-995.CrossRefGoogle Scholar
  69. Rader, W. E. (1948). Rhizoctonia carotae n. sp. and Gliocladium aureum n. sp., two new pathogens of carrots in cold storage. Phytopathology, 38, 440-452.Google Scholar
  70. Ricker, M. D., & Punja, Z. K. (1991). Influence of fungicide and chemical salt dip treatments on crater rot caused by Rhizoctonia carotae in long-term storage. Plant Disease, 75, 470-474.CrossRefGoogle Scholar
  71. Roberts, P. A. (1987). The influence of planting date of carrot onMeloidogyne incognitareproduction and injury to roots. Nematologica, 33, 335-342.CrossRefGoogle Scholar
  72. Roberts, P. A., Magyarosy, A. C., Matthews, W. C., & May, D. M. (1988). Effects of metam-sodium applied by drip irrigation on root-knot nematodes, Pythium ultimum, and Fusarium sp. in soil and on carrot and tomato roots. Plant Disease, 72, 213-217.CrossRefGoogle Scholar
  73. Santos, P., Nuñez, J. J., & Davis, R. M. (2000). Influence of gibberellic acid on carrot growth and severity of Alternaria leaf blight. Plant Disease, 84, 555-558.CrossRefGoogle Scholar
  74. Schrandt, J. K., Davis, R. M., & Nuñez. J. J. (1994). Host range and influence of nutrition, temperature, and pH on growth of Pythium violae from carrot. Plant Disease, 78, 335-338.CrossRefGoogle Scholar
  75. Seagall, R. H., & Dow, A. T. (1973). Effects of bacterial contamination and refrigerated storage on bacterial soft rot of carrots. Plant Disease Reporter, 57, 896-899.Google Scholar
  76. Simon, P. W., Matthews, W. C., & Roberts, P. A. (2000). Evidence for simply inherited dominant resistance to Meloidogyne javanicain carrot. Theor. Appl. Genet. 100:735-742.CrossRefGoogle Scholar
  77. Smith, P. R. (1967). The survival in soil of Itersonilia pastinacae Channon, the cause of parsnip canker. Australian Journal of Biological Sciences, 20, 647-660.Google Scholar
  78. Sondheimer, E. (1957). The isolation and identification of 3-methyl-6-methoxy-8-hydroxy-3, 4-dihydroisocoumarin from carrots. Journal of the American Chemical Society, 79, 5036-5039.CrossRefGoogle Scholar
  79. Stelfox, D., & Henry, A. W. (1978). Occurrence of rubbery brown rot of stored carrots in Alberta. Canadian Plant Disease Survey, 58, 87-91.Google Scholar
  80. Strandberg, J. O., & White, J. M. (1979). Effect of soil compaction on carrot roots. Journal of the American Society for Horticultural Science, 104, 344-349.Google Scholar
  81. Strandberg, J. O. (1983). Infection and colonization of inflorescences and mericarps of carrot by Alternaria dauci. Plant Disease, 67, 1351-1353.CrossRefGoogle Scholar
  82. Strandberg, J. O. (1988). Establishment of Alternaria leaf blight in controlled environments. Plant Disease, 72, 522-526.CrossRefGoogle Scholar
  83. Subbarao, K. V. (1998). Progress toward integrated management of lettuce drop. Plant Diseaseo, 82, 1068-1078.CrossRefGoogle Scholar
  84. Towner, D. B., & Beraha, L. (1976). Core-rot: A bacterial disease of carrots. Plant Disease Reporter, 60, 357-359.Google Scholar
  85. Tylkowska, K. (1992). Carrot seed-borne diseases caused by Alternaria species. Pages 337-352 in: Alternaria Biology, Plant Diseases and Metabolites. J. Chelkowski and A. Visconti, eds. Elsevier Science Publishers, Amsterdam.Google Scholar
  86. Umesh, K. C., Davis, R. M., & Gilbertson, R. L. (1998). Seed contamination thresholds for development of carrot bacterial blight caused by Xanthomonas campestris pv. carotae. Plant Disease, 82, 1271-1275.CrossRefGoogle Scholar
  87. Valder, P. G. (1958). The biology of Helicobasidium purpureum Pat. Transactions of the British Mycological Society, 41, 283-308.CrossRefGoogle Scholar
  88. Vivoda, E., Davis, R. M., Nuñez, J. J., & Guerard, J. P. (1991). Factors affecting the development of cavity spot of carrot. Plant Disease, 75, 519-522.CrossRefGoogle Scholar
  89. Vrain, T. C. (1982). Relationship between Meloidogyne hapla density and damage to carrots in organic soils. Journal of Nematology, 14, 50-57.PubMedCentralPubMedGoogle Scholar
  90. Waterhouse, P. M., & Murant, A. F. (1983). Further evidence on the nature of the dependence of carrot mottle virus on carrot red leaf virus for transmission by aphids. Annals of Applied Biology, 103, 455-464.CrossRefGoogle Scholar
  91. Watson, M. T., & Falk, B. W. (1994). Ecological and epidemiological factors affecting carrot motley dwarf development in carrots grown in the Salinas Valley of California. Plant Disease, 78, 477-481.CrossRefGoogle Scholar
  92. Watson, M. T., Tian, T., Estabrook, E., & Falk, B. W. (1998). A small RNA identified as a component of California carrot motley dwarf resembles the beet western yellows luteovirus ST9-associated RNA. Phytopathology, 88, 164-170.PubMedCrossRefGoogle Scholar
  93. White, J. G. (1988). Studies on the biology and control of cavity spot of carrots. Annals of Applied Biology, 113, 259-268.CrossRefGoogle Scholar
  94. White, J. M., & Strandberg, J. O. (1979). Physical factors affecting carrot root growth: Water saturation of soil. Journal of the American Society for Horticultural Science, 104, 414-416.Google Scholar
  95. Whitney, N. J. (1954). Investigations of Rhizoctonia crocorum (Pers.) DC in relation to the violet root rot of carrots. Canadian Journal of Botany, 32, 679-704.CrossRefGoogle Scholar
  96. Whitney, N. J. (1956). The control of violet root rot in Ontario. Canadian Journal of Agricultural Science, 36, 276-283.Google Scholar
  97. Wilson, M., & Henderson, D. M. (1966). British Rust Fungi. University Press, Cambridge, Great Britain.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • R. Michael Davis
    • 1
  • Joe Nu≁ez
    • 2
  1. 1.Department of Plant PathologyDepartment of Plant PathologyDavis CA
  2. 2.UC Cooperative ExtensionBakersfieldUSA

Personalised recommendations