Advertisement

Novel Tensio-Active Microbial Compounds for Biocontrol Applications

  • Meenal Kulkarni
  • Ranjana Chaudhari
  • Ambalal Chaudhari
Part of the Integrated Management of Plants Pests and Diseases book series (IMPD, volume 1)

Abstract

Several microorganisms are known to produce tensio-active compounds (biosurfactants). They have emerged out as successful alternative to synthetic surfactants. The enormous diversity of biosurfactants makes them interesting for application in several areas. Rhamnolipids are one such heterogeneous group of compounds which has been studied as a model system and acquired a status as potential performance-effective molecules in various fields, like production of speciality chemicals, additives for environmental remediation and biological control agent.

Keywords

Pseudomonas Aeruginosa Biological Control Agent Biosurfactant Production Synthetic Surfactant Rhamnolipid Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abalos, A., Pinazo, A., Infante, R., Casals, M., Gracia, F., & Manresa, A. (2001). Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir, 17, 1367-1371.CrossRefGoogle Scholar
  2. Arino, S., Marchal, R., & Vandecasteele, J. P. (1996). Identification and purification of a rhamnolipidic biosurfactant by a Pseudomonas species. Applied Microbiology and Biotechnology, 45, 162-168.CrossRefGoogle Scholar
  3. Banat, I. M. (1993). The isolation of thermophilic biosurfactant producing Bacillus sp. Biotechnology Lettsers, 15, 591-594.CrossRefGoogle Scholar
  4. Banat, I. M. (1995). Biosurfactant production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresources Technology, 51,1-12.CrossRefGoogle Scholar
  5. Banat, I. M., Makkar, R. S., & Comeotra, S. S. (2000). Potential commercial application of microbial surfactants. Applied Microbiology and Biotechnology, 53, 495-508.PubMedCrossRefGoogle Scholar
  6. Benincasa, M., Abalos, A., Morcira, I., & Manresa, A. (2002). Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole source of carbon. Journal of Food Engineering, 54, 283-288.CrossRefGoogle Scholar
  7. Benincasa, M., Abalos, A., Oliveira, I., & Manresa A. (2004). Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie van Leeuwenhoek, 85, 1-8.PubMedCrossRefGoogle Scholar
  8. Bunster, L., Fokkema, N. J., & Schippers, B. (1989). Effect of surface-active Pseudomonas Pseudomonas spp. on leaf wettability. Applied and Environmental Microbiology, 55, 1340-1345.PubMedCentralPubMedGoogle Scholar
  9. Chhatre, S., Purohit, H., Shanker, R., & Khanna, P. (1996) Bacterial consortia for crude oil spill remediation. Water Science and Technology, 34, 187–193.CrossRefGoogle Scholar
  10. Chayabutra, C., Wu, J., & Lu-Kwang, J. (2001). Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates. Biotehnology and Bioengineering, 72, 25-33.CrossRefGoogle Scholar
  11. Cooper, D. G. (1986). Biosurfactants. Microbiological Sciences, 3, 145-149.PubMedGoogle Scholar
  12. Daniel, H. J., Otto, R. T., Binder, M., Reuss, M., & Syldatk, C. (1999). Production of sphorolipids from whey. Development of a two stage process with Cryptococcus curvatus ATCC 20509 and Candida bombicola ATCC 22214 using deproteinized whey concentrates as substrates. Applied Microbiology and Biotechnology, 51, 40-45.PubMedCrossRefGoogle Scholar
  13. Davey, M. E., Caiazza, N. C., & O’Toole, G. A. (2003). Rhamnolipid surfactant production affects biofilm architecture∈dex in seudomonas. aeruginosa PAO1. Journal of Bacteriology, 185, 1027-1036.PubMedCentralPubMedCrossRefGoogle Scholar
  14. De Souza, J. T., Weller, D. M., & Raaijmakers, J. M. (2003). Frequency, diversity and activity of 2, 4-diacetyl-phloroglucinol-producing fluorescent Pseudomonas spp. in Dutch take-all decline soils. Phytopathology, 93, 54-63.PubMedCrossRefGoogle Scholar
  15. Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61, 47-64.PubMedCentralPubMedGoogle Scholar
  16. Déziel, E., Lépine, F., Milot, S., & Villemur, R. (2000). Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57 RP. Biochimica Biophysica Acta/Molecular and Cell Biology of Lipids, 1485, 145-152.CrossRefGoogle Scholar
  17. Duynstee, H. I., van Vliet, M. J., van der Marel, G. A., & van Boom, J. H. (1998). An efficient synthesis of (R)-3-{(R)-3-[2-O-(a-L-Rhamnopyranosyl)-α-L-rhamnopyranosyl]oxydecanoyl}oxydecanoic acid, a rhamnolipid from Pseudomonas aeruginosa. European Journal of Organic Chemistry, 1998, 303-307.CrossRefGoogle Scholar
  18. Edwards, J. R., & Hayashi, J. A. (1965). Structure of a rhamnolipid from Pseudomonas aeruginosa. Archives of Biochemistry and Biophyics, 111, 415-421.CrossRefGoogle Scholar
  19. Environment Protection Agency. (2004). Rhamnolipid biosurfactant (PC Code 110029). Biopesticide registration action document. Available on line at http://www.epa.gov/pesticides/biopesticides/ ingredients/factsheets/factsheet_110029.htmGoogle Scholar
  20. Fiechter, A. (1992). Biosurfactants: moving towards industrial application. Trends in Biotechnology, 10, 208-217.PubMedCrossRefGoogle Scholar
  21. Georgiou, G., Lin, S., & Sharma, M. M. (1992). Surface active compounds from microorganisms. Biotechnology, 10, 60-65.PubMedCrossRefGoogle Scholar
  22. Gruber, T., Chmiel, H., Kappeli, O., Sticher, P., & Fiechter, A. (1993). Integrated process for continuous rhamnolipid biosynthesis. In: Biosurfactants, production, properties, applications. Kosaric, N. (ed.), Marcel Dekker, New York, 157-173.Google Scholar
  23. Haba, E., Espuny, M. J., Busquets, M., & Manresa, A. (2000). Screening and production of rhamnolipid by Pseudomonas aeruginosa 47T2 NCBIM 40044 from waste frying oils. Journal of Applied Microbiology, 88, 379-387.PubMedCrossRefGoogle Scholar
  24. Haba, E., Pinazo, A., Jauregui, O., Espuny, M. J., Infante, M. R., & Manresa, A. (2003). Physiochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnology and Bioengineering, 81, 316-322.PubMedCrossRefGoogle Scholar
  25. Haferburg, D., Hommel, R., Kleber, H. P., Klug, S., Schuster, G., & Zschiegner, H. J. (1987). Antiphytovirale aktivität von rhamnolipid aus Pseudomonas aeruginosa. Acta Biotechnologica, 7, 353-356.CrossRefGoogle Scholar
  26. Hauser, G., & Karnovsky, M. L. (1958). Studies on the biosynthesis of L-rhamnose. Journal of Biological Chemistry, 233, 287-291.PubMedGoogle Scholar
  27. Ishigami, Y. (1997). Characterization of biosurfactants. In: Structure-performance relationships in surfactants. Esumi, K. & Ueno, M. (eds.), Marcel Dekker, New York, 197-226.Google Scholar
  28. Jarvis, F. G., & Johnson, M. J. (1949). A glyco-lipide produced by Pseudomonas aeruginosa. Journal of the Americal Chemical Society, 71, 4124–4126.CrossRefGoogle Scholar
  29. Karanth, N. G. K., Deo, P. G., & Veenanadig, N. K. (1999). Microbial production of biosurfactants and their importance. Current Science, 77, 116-121.Google Scholar
  30. Kim, S. H., Lim, E. J., Lee, S. O., Lee, J. D., & Lee, T.H. (2000a). Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnology and Applied Biochemistry, 31, 249-253.CrossRefGoogle Scholar
  31. Kim, B. S., Lee, J. Y., & Hwang, B. K. (2000b). In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Management Science, 56, 1029–1035.CrossRefGoogle Scholar
  32. Kosaric, N., Cairns, W. L., & Gray, N.C.C. (1987). Microbial emulsifiers and de-emulsifiers. In: Biosurfactants and Biotechnology, Vol. 25, Marcel Dekker, New York, pp 247-331.Google Scholar
  33. Kosaric, N. (1993). Biosurfactants: production, properties, applications. Marcel Dekker, New York.Google Scholar
  34. Kosaric, N. (1996). Biosurfactants. In: Biotechnology. Vol. 6. Rehm, H. J., Reed, G., Puhler, A. & Stadler, P. (Eds.). VCH Weinheim, New York, 659-717.Google Scholar
  35. Kosaric, N. (2001). Biosurfactants and their application for soil bioremediation. Food Technology and Biotechnology, 39, 295-304.Google Scholar
  36. Kourtkoutas, Y., & Banat, I. M. (2004). Biosurfactant production and application. In: Concise Encyclopedia of Bioresource Technology. Pandey, A. (ed.), The Haworth Press, Inc., New York, 505-514.Google Scholar
  37. Lang, S., & Wullbrandt, D. (1999). Rhamnose lipids biosynthesis, microbial production and application potential. Applied Microbiology and Biotechnology, 51, 22-32.PubMedCrossRefGoogle Scholar
  38. Lee, Y., Lee, S. Y., & Yang, J. W. (1999) Production of rhamnolipid biosurfactant by fed-batch culture of Pseudomonas aeruginosa using glucose as a sole carbon source. Bioscience Biotechnolgy and Biochemistry, 63, 946-947.CrossRefGoogle Scholar
  39. Maier, R. M., & Soberon-Chavez, G. (2000). Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Applied Microbiology and Biotechnology, 54, 625-633.PubMedCrossRefGoogle Scholar
  40. Matsufuji, M., Nakata, K., & Yoshimoto, A. (1997). High production of rhamnolipid by Pseudomonas aeruginosagrowing on ethanol. Biotechnology Letters, 19, 1213-1215.CrossRefGoogle Scholar
  41. Muller, A., Russel, G., & Lucase, P. (1997). European Biotech’ 97. A new economy. The fourth annual Ernst and Young Report on the European Biotechnology Industry. Oxford Business Publishing, Oxford, UK.Google Scholar
  42. Ochsner, U. A., Reiser, J., Fiechter, A., & Witholt, B. (1995). Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Applied and Environmental Microbiology, 61, 3503-3506.PubMedCentralPubMedGoogle Scholar
  43. Ochsner, U. A., Hembach, T., & Fiechter, A. (1996). Production of rhamnolipid biosurfactants. Advances in Biochemical Engineering Biotechnology, 53, 89-118.Google Scholar
  44. Ozdemir, G., Peker, S., & Helvaci, S. S. (2004). Effect of pH on the surface and interfacial behaviour of rhamnolipids R1 and R2. Colloids and Surfaces: Physiochemical and Engineering Aspects, 234, 135-143.Google Scholar
  45. Patel, R. M., & Desai, A. J. (1997). Biosurfactant production by Pseudomonas aeruginosa GS3 from molasses. Letters in Applied Microbiology, 25, 91-94.CrossRefGoogle Scholar
  46. Rahman, K. S. M., Banat, I. M., Thahira, J., Thayumanavan, T. & Lakshmanaperumalsamy, P. (2002). Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresources Technology, 81, 25-32.CrossRefGoogle Scholar
  47. Sim, L., Ward., O. P. & Le, Z. Y. (1997). Production and characterization of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. Journal of Industrial Microbiology and Biotechnology, 19, 232-238.PubMedCrossRefGoogle Scholar
  48. Stanghellini, M. E., Kim, D. H., Ramussen, S. L. & Rorabaugh, P. A. (1996). Control of root rot of peppers caused by Phytophthora capsici with a nonionic surfactant. Plant Disease, 80, 1113-1116.CrossRefGoogle Scholar
  49. Stanghellini, M. E. & Miller, R. M. (1997). Biosurfactants, their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Disease, 81, 4-12.CrossRefGoogle Scholar
  50. Van Dyke, M. I., Couture, P., Brauer, M., Lee, H., & Trevors, J. T. (1993). Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Canadian Journal of Microbiology, 39, 1071–1078.PubMedCrossRefGoogle Scholar
  51. Wagner, F., Kim, J. S, Lang, S., Li, Z.Y., Marwede, G., Matulovic, U., et al. (1984). Production of surface active anionic glycolipids by resting and immobilized microbial cells. Third European Congress of Biotechnology. Verlag Chemie, Weinheim, 1, 13-19.Google Scholar
  52. Wilson, N. G., & Bradley, G. (1996). The effect of immobilization on rhamnolipid production by Pseudomonas fluorescens. Journal of Applied Bacteriology, 81, 525-530.Google Scholar
  53. Wu, J. (1997). Rhamnolipid production by fermentation of Pseudomonas aeruginosa and application in enzymatic hydrolysis of cellulose. Ph.D. dissertation, University of Akron, USA.Google Scholar
  54. Zhang, Y., & Miller, R. M. (1992). Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Applied and Environmental Microbiology, 58, 3276-3282.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Meenal Kulkarni
    • 1
  • Ranjana Chaudhari
    • 1
  • Ambalal Chaudhari
    • 1
  1. 1.School of Life SciencesNorth Maharashtra UniversityJalgaonIndia

Personalised recommendations