Advertisement

The NADH Oxidase-Prx System in Amphibacillus Xylanus

  • Youichi Niimura
Part of the Subcellular Biochemistry book series (SCBI, volume 44)

Abstract

Amphibacillus NADH oxidase belongs to a growing new family of peroxiredoxin-linked oxidoreductases including alkyl hydroperoxide reductase F (AhpF). Like AhpF it displays extremely high hydroperoxide reductase activity in the presence of a Prx, thus making up the NADH oxidase-Prx system. The NADH oxidase primarily catalyzes the reduction of oxygen by NADH to form H2O2, while the Prx immediately reduces H2O2 (or ROOH) to water (or ROH). Consequently, the NADH oxidase-Prx system catalyzes the reduction of both oxygen and hydrogen peroxide to water with NADH as the preferred electron donor. The NADH oxidase-Prx system is widely distributed in aerobically growing bacteria lacking a respiratory chain and catalase, and plays an important role not only in scavenging hydroperoxides but also in regenerating NAD in these bacteria

Peroxiredoxin Prx Peroxiredoxin reductase NADH oxidase Alkyl hydroperoxide reductase AhpF Amphibacillus xylanus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai, T., Date, M., Sato, A., Asano, M., Watanabe, T., Zako, T., Odaka, M., Yohda, M., Takeda, K., Nakagawa, J., Kawasaki, S., and Niimura, Y., 2005, The NADH oxidase-Prx system functional as NADH oxidase and alkylhydroperoxide reductase. Protein interaction and physiological role in Amphibacillus, Flavins and Flavoproteins 2005: 341–346Google Scholar
  2. Calzi, M. L., and Pool, L.B., 1997, Requirement for the two AhpF cysteine disulfide centers in catalysis of peroxide reduction of alkyl hydroperoxide reductase protein. Biochemistry. 36: 13357–13364.CrossRefGoogle Scholar
  3. Jacobson, F. S., Morgan, R. W., Christman, M. F., and Ames, B. N., 1989, An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. J. Biol. Chem. 264: 1488–1496.PubMedGoogle Scholar
  4. Kitano, K., Niimura, Y., Nishiyama, Y., Miki, K., 1999, Stimulation of Peroxidase activity by decamerization related to ionic strength: AhpC protein from Amphibacillus xylanus, J. Biochem. 126: 313–319.PubMedGoogle Scholar
  5. Kitano, K., Kita, A., Hakoshima, T., Niimura, Y., Miki, K., 2005, CrystalGoogle Scholar
  6. Structure of Decameric Peroxiredoxin (AhpC) from Amphibacillus xylanus. Proteins 59: 644–647Google Scholar
  7. Koyama, N., Koitabashi, T., Niimura, Y., and Massey, V., 1998, Peroxide reductase activity of NADH dehydrogenase of an alkaliphilic Bacillus in the presence of a 22-kDa protein component from Amphibacillus xylanus., Biochem. Biophys. Res. Commun. 247: 659–662.CrossRefPubMedGoogle Scholar
  8. Kozaki, M., Iino, H., Anzai, Y., and Niimura, Y., 1996, Aerobic metabolism of glucose by facultative anaerobe Sporolactobacillus inulinus. Bulletin of The Doctoral Course of Science for Living System Showa Women’s University, 5: 33–41.Google Scholar
  9. Niimura, Y., Yanagida, F., Uchimura, T., Ohara, N., Suzuki, K., and Kozaki, M., 1987, A new facultative anaerobic xylan-using alkalophile lacking cytochrome, quinone, and catalase. Agric. Biol. Chem. 51: 2271–2275.Google Scholar
  10. Niimura, Y., Koh, E., Uchimura, T., Chara, N., and Kozaki, M., 1989, Aerobic and anaerobic metabolism in a facultative anaerobe Ep01 lacking cytochrome, quinone and catalase. FEMS Microbiol. Lett. 61: 79–84.CrossRefGoogle Scholar
  11. Niimura, Y., Yanagida, F., Suzuki, K., Komagata, K., and Kozaki, M., 1990, Amphibacillus xylanus gen. nov., sp. nov., a facultatively anaerobic sporeforming xylan-digesting bacterium which lacks cytochrome,quinone, and catalase. Int. J. Syst. Bacteriol. 40: 297–301.CrossRefGoogle Scholar
  12. Niimura, Y., Ohnishi, K., Yarita, Y., Hidaka, M., Masaki, H., Uchimura, T., Suzuki, H., and Kozaki, M., 1993, A flavoprotein functional as NADH oxidase from Amphibacillus xylanus Ep01: purification and characterization of the enzyme and structural analysis of its gene. J. Bacteriol. 175: 7945–7950.PubMedGoogle Scholar
  13. Niimura, Y., Yokoyama, K., Ohnishi, K., and Massey, V., 1994, A flavoprotein functional as NADH oxidase from Amphibacillus xylanus scavenges hydrogen peroxide in the presence of free FAD. Biosci. Biotech. Biochem., 58: 2310–2311.CrossRefGoogle Scholar
  14. Niimura, Y., Poole, L. B., and Massey, V., 1995, Amphibacillus xylanus NADH oxidase and Salmonella typhimurium alkyl-hydroperoxide reductase flavoprotein components show extremely high scavenging activity for both alkyl hydroperoxide and hydrogen peroxide in the presence of S. typhimurium alkyl hydroperoxide reductase 22-kDa protein component. J. Biol. Chem. 270: 25645–25650.CrossRefPubMedGoogle Scholar
  15. Niimura, Y. and Massey, V., 1996, Reaction mechanism of Amphibacillus xylanus NADH oxidase/alkyl hydroperoxide reductase flavoprotein. J. Biol. Chem. 271: 30459–30464.CrossRefPubMedGoogle Scholar
  16. Niimura, Y., Nishiyama, Y., Takeda, K., Tsuji, H., Ohnishi, K., Watanabe, T., Nishino, T., and Massey, V., 1999. An NADH oxidase functional as alkyl hydroperoxide reductase. Flavins and Flavoproteins 1999 : 677–680.Google Scholar
  17. Niimura, Y., Nishiyama, Y., Saito, D., Tsuji, H., Hidaka, M., Miyaji, T., Watanabe, T., and Massey, V., 2000, A hydrogen peroxide-forming NADH oxidase that functions as an alkyl hydroperoxide reductase in Amphibacillus xylanus. J. Bacteriol. 182: 5046–5051.CrossRefPubMedGoogle Scholar
  18. Nishiyama, Y., Massey, V,. Anzai, Y., Watanabe, T., Miyaji, T., Uchimura, T., Kozaki, M., Suzuki, H., and Niimura, Y., 1997., Purification and characterization of Sporolactobacillus inulinus NADH oxidase and its physiological role in aerobic metabolism of the bacterium. J. Ferment. Bioeng. 84: 22–27.CrossRefGoogle Scholar
  19. Nishiyama, Y., Massey, V., Takeda, K., Kawasaki, S., Sato, J., Watanabe, T., and Niimura, Y., 2001, Hydrogen peroxide-forming NADH oxidase belonging to the peroxiredoxin oxidoreductase family: existence and physiological role in bacteria. J. Bacteriol. 183: 2431–2438.CrossRefPubMedGoogle Scholar
  20. Ohnishi, K., Niimura, Y., Yokoyama, K., Hidaka, M., Masaki, H., Uchimura, T., Suzuki, H., Uozumi, T., Kozaki, M., Komagata, K., and Nishino, T., 1994, Purification and analysis of a flavoprotein functional as NADH oxidase from Amphibacillus xylanus overexpressed in Escherichia coli. J. Biol. Chem. 269: 31418–31423.PubMedGoogle Scholar
  21. Ohnishi, K., Niimura, Y., Hidaka, M., Masaki, H., Suzuki, H., Uozumi, T., and Nishino, T., 1995, Role of cysteine 337 and cysteine 340 in flavoprotein that functions as NADH oxidase from Amphibacillus xylanus studied by site-directed mutagenesis. J. Biol. Chem. 270: 5812–5817.CrossRefPubMedGoogle Scholar
  22. Poole, L.B., Reynolds, C. M., Wood, Z. A., Karplus, P. A., Ellis, H. R., and Calzi, M. L., 2000a, AhpF and other NADH: peroxiredoxin oxidoreductases, homologues of low Mr thioredoxin reductase. Eur. J. Biochem. 267: 6126–6133.CrossRefGoogle Scholar
  23. Poole, L.B., Higuchi, M., Shimada, M., Calzi, M. L., and Kamio, Y., 2000b, Streptococcus mutans H2O2-forming NADH oxidase is an alkyl hydroperoxide reductase protein. Free Radic. Biol. Med. 28: 108–120.CrossRefGoogle Scholar
  24. Wood, Z. A., Poole, L.B., Hantgan, R. R., and Karplus, P. A., 2002, Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry 41: 5493–5504.CrossRefPubMedGoogle Scholar
  25. Seaver, L. C., and Imlay, J. A., 2001, Alkyl hydroperoxide reductase is primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacteriol. 183: 7173–7181.CrossRefPubMedGoogle Scholar
  26. Takeda, K., Kawasaki, S., Niimura, Y., Nishiyama, Y., and Massey, V., 2002, NADH oxidase concerned in hydro peroxide scavenging system. Reaction mechanism and Physiological Role in Microorganisms. Flavins and Flavoproteins 2002: 393–398.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Youichi Niimura
    • 1
  1. 1.Department of BioscienceTokyo University of AgricultureTokyoJapan

Personalised recommendations