Skip to main content

Functions of Typical 2-Cys Peroxiredoxins in Yeast

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 44))

Abstract

Peroxiredoxins are ubiquitous proteins that are found from bacteria to humans. Until recently they were thought to solely act as antioxidants catalysing the reduction of peroxides through their associated thioredoxin peroxidase activity. However, recent work has begun to uncover hitherto unsuspected roles for one group of these proteins, the typical 2-Cys peroxiredoxins (2-Cys Prx). For example, typical 2-Cys Prxs have been found to have roles in the model organisms Schizosaccharomyces pombe and Saccharomyces cerevisiae in regulating signal transduction, in DNA damage responses and as molecular chaperones. There is increasing evidence that rm H2O2 is utilised as a signalling molecule to regulate a range of important cellular processes. As abundant and ubiquitous peroxidase enzymes the peroxidase activity of typical 2-Cys Prxs is important in the regulation of these functions. Significantly, studies in yeast suggest that the regulation of the thioredoxin peroxidase and chaperone activities of these multi-function enzymes is an important aspect of H2O2–mediated signal transduction and consequently have provided important insight into the roles of these proteins in higher eukaryotes

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Biteau, B., Labarre, J., Toledano, M.B., 2003, ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425: 980–984.

    Article  CAS  PubMed  Google Scholar 

  • Bozonet, S.M., Findlay, V.J., Day, A.M., Cameron, J., Veal, E.A., Morgan, B.A., 2005, Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide. J. Biol. Chem. 280: 23319–23327.

    Article  CAS  PubMed  Google Scholar 

  • Buck, V., Quinn, J., Soto Pino, T., Martin, H., Saldanha, J., Makino, K., Morgan, B.A., Millar, J.B., 2001, Peroxide sensors for the fission yeast stress-activated mitogen-activated protein kinase pathway. Mol. Biol. Cell 12: 407–419.

    CAS  PubMed  Google Scholar 

  • Budanov, A.V., Sablina, A.A., Feinstein, E., Koonin, E.V., Chumakov, P.M., 2004, Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304: 596–600.

    Article  CAS  PubMed  Google Scholar 

  • Castillo, E.A., Ayte, J., Chiva, C., Moldon, A., Carrascal, M., Abian, J., Jones, N., Hidalgo, E., 2002, Diethylmaleate activates the transcription factor Pap1 by covalent modification of critical cysteine residues. Mol. Microbiol. 45: 243–254.

    Article  CAS  PubMed  Google Scholar 

  • Chang, T.S., Jeong, W., Woo, H.A., Lee, S.M., Park, S., Rhee, S.G., 2004, Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem. 279: 50994–51001.

    Article  CAS  PubMed  Google Scholar 

  • Choi, M.H., Lee, I.K., Kim, G.W., Kim, B.U., Han, Y.H., Yu, D.Y., Park, H.S., Kim, K.Y., Lee, J.S., Choi, C., Bae, Y.S., Lee, B.I., Rhee, S.G., Kang, S.W., 2005, Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 435: 347–353.

    Article  CAS  PubMed  Google Scholar 

  • Choi, W., Yoo, Y.J., Kim, M., Shin, D., Jeon, H.B., Choi, W., 2003, Identification of proteins highly expressed in the hyphae of Candida albicans by two-dimensional electrophoresis. Yeast 20: 1053–1060.

    Article  CAS  PubMed  Google Scholar 

  • Conway, J.P., Kinter, M., 2006, Dual role of peroxiredoxin I in macrophage-derived foam cells. J. Biol. Chem. 281: 27991–28001.

    Article  CAS  PubMed  Google Scholar 

  • Delaunay, A., Isnard, A.D., Toledano, M.B., 2000, H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J. 19: 5157–5166.

    Article  CAS  PubMed  Google Scholar 

  • Delaunay, A., Pflieger, D., Barrault, M.B., Vinh, J., Toledano, M.B., 2002, A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111: 471–481.

    Article  CAS  PubMed  Google Scholar 

  • Enjalbert, B., Nantel, A., Whiteway, M., 2003, Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol. Biol. Cell 14: 1460–1467.

    Article  CAS  PubMed  Google Scholar 

  • Enjalbert, B., Smith, D.A., Cornell, M.J., Alam, I., Nicholls, S., Brown, A.J.P., Quinn, J., 2006, Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol. Biol. Cell 17: 1018–1032.

    Article  CAS  PubMed  Google Scholar 

  • Huang, M.E., Kolodner, R.D., 2005, A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage. Mol. Cell 17: 709–720.

    Article  CAS  PubMed  Google Scholar 

  • Huang, M.E., Rio, A.G., Nicolas, A., Kolodner, R.D., 2003, A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. Proc. Natl. Acad. Sci. USA 100: 11529–11534.

    Article  CAS  PubMed  Google Scholar 

  • Ikner, A., Shiozaki, K., 2005, Yeast signaling pathways in the oxidative stress response. Mutat. Res. 569: 13–27.

    CAS  PubMed  Google Scholar 

  • Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Lee, S.S., Moon, J.C., Yun, J.W., Choi, Y.O., Kim, W.Y., Kang, J.S., Cheong, G.W., Yun, D.J., Rhee, S.G., Cho, M.J., Lee, S.Y., 2004, Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117: 625–635.

    Article  CAS  PubMed  Google Scholar 

  • Koo, K.H., Lee, S., Jeong, S.Y., Kim, E.T., Kim, H.J., Kim, K., Song, K., Chae, H.Z., 2002, Regulation of thioredoxin peroxidase activity by C-terminal truncation. Arch. Biochem. Biophys. 397: 312–318.

    Article  CAS  PubMed  Google Scholar 

  • Kuge, S., Arita, M., Murayama, A., Maeta, K., Izawa, S., Inoue, Y., Nomoto, A., 2001, Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation. Mol. Cell. Biol. 21: 6139–6150.

    Article  CAS  PubMed  Google Scholar 

  • Missall, T.A., Moran, J.M., Corbett, J.A., Lodge, J.K., 2005, Distinct stress responses of two functional laccases in Cryptococcus neoformans are revealed in the absence of the thiol-specific antioxidant Tsa1. Eukaryot. Cell 4: 202–208.

    Article  CAS  PubMed  Google Scholar 

  • Missall, T.A., Pusateri, M.E., Donlin, M.J., Chambers, K.T., Corbett, J.A., Lodge, J.K., 2006, Posttranslational, translational, and transcriptional responses to nitric oxide stress in Cryptococcus neoformans: implications for virulence. Eukaryot. Cell 5: 518–529.

    Article  CAS  PubMed  Google Scholar 

  • Missall, T.A., Pusateri, M.E., Lodge, J.K., 2004, Thiol peroxidase is critical for virulence and resistance to nitric oxide and peroxide in the fungal pathogen, Cryptococcus neoformans. Mol. Microbiol. 51: 1447–1458.

    Article  CAS  PubMed  Google Scholar 

  • Neumann, C.A., Krause, D.S., Carman, C.V., Das, S., Dubey, D.P., Abraham, J.L., Bronson, R.T., Fujiwara, Y., Orkin, S.H., Van Etten, R.A., 2003, Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424: 561–565.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, A.N., Lee, A., Place, W., Shiozaki, K., 2000, Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase. Mol. Biol. Cell 11: 1169–1181.

    CAS  PubMed  Google Scholar 

  • Okazaki, S., Naganuma, A., Kuge, S., 2005, Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast. Antioxid. Redox Signal. 7: 327–334.

    Article  CAS  PubMed  Google Scholar 

  • Quinn, J., Findlay, V.J., Dawson, K., Jones, N., Morgan, B.A., Toone, W.M., 2002, Distinct regulatory proteins control the adaptive and acute responses to H2O2 in Schizosaccharomyces pombe. Mol. Biol. Cell 13: 805–816.

    Article  CAS  PubMed  Google Scholar 

  • Rand, J.D., Grant, C.M., 2006, The thioredoxin system protects ribosomes against stress-induced aggregation. Mol. Biol. Cell 17: 387–401.

    Article  CAS  PubMed  Google Scholar 

  • Ross, S.J., Findlay, V.J., Malakasi, P., Morgan, B.A., 2000, Thioredoxin peroxidase is required for the transcriptional response to oxidative stress in budding yeast. Mol. Biol. Cell 11: 2631–2642.

    CAS  PubMed  Google Scholar 

  • Shin, D.H., Jung, S., Park, S.J., Kim, Y.J., Ahn, J.M., Kim, W., Choi, W., 2005, Characterization of thiol-specific antioxidant 1 (TSA1) of Candida albicans. Yeast 22: 907–918.

    Article  CAS  PubMed  Google Scholar 

  • Smith, S., Hwang, J.Y., Banerjee, S., Majeed, A., Gupta, A., and Myung, K., 2004, Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101: 9039–9044.

    Article  CAS  PubMed  Google Scholar 

  • Toone, W.M., Jones, N., 1998, Stress-activated signalling pathways in yeast. Genes Cells 3: 485–498.

    Article  CAS  PubMed  Google Scholar 

  • Toone, W.M., Kuge, S., Samuels, M., Morgan, B.A., Toda, T., Jones, N., 1998, Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (Exportin) and the stress-activated MAP kinase Sty1/Spc1. Genes Dev. 12: 1453–1463.

    Article  CAS  PubMed  Google Scholar 

  • Toone, W.M., Morgan, B.A., Jones, N., 2001, Redox control of AP-1-like factors in yeast and beyond. Oncogene 20: 2336–2346.

    Article  CAS  PubMed  Google Scholar 

  • Urban, C., Sohn, K., Lottspeich, F., Brunner, H., Rupp, S., 2003, Identification of cell surface determinants in Candida albicans reveals Tsa1p, a protein differentially localized in the cell. FEBS Lett. 544: 228–235.

    Article  CAS  PubMed  Google Scholar 

  • Urban, C., Xiong, X., Sohn, K., Schroppel, K., Brunner, H., Rupp, S., 2005, The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans. Mol. Microbiol. 57: 1318–1341.

    Article  CAS  PubMed  Google Scholar 

  • Veal, E.A., Findlay, V.J., Day, A.M., Bozonet, S.M., Evans, J.M., Quinn, J., Morgan, B.A., 2004, A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase. Mol. Cell 15: 129–139.

    Article  CAS  PubMed  Google Scholar 

  • Veal, E.A., Ross, S.J., Malakasi, P., Peacock, E., Morgan, B.A., 2003, Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor. J. Biol. Chem. 278: 30896–30904.

    Article  CAS  PubMed  Google Scholar 

  • Vivancos, A.P., Castillo, E.A., Biteau, B., Nicot, C., Ayte, J., Toledano, M.B., Hidalgo, E., 2005, A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway. Proc. Natl. Acad. Sci. USA 102: 8875–8880.

    Article  CAS  PubMed  Google Scholar 

  • Vivancos, A.P., Castillo, E.A., Jones, N., Ayte, J., Hidalgo, E., 2004, Activation of the redox sensor Pap1 by hydrogen peroxide requires modulation of the intracellular oxidant concentration. Mol. Microbiol. 52: 1427–1435.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, E., Luche, S., Penna, L., Chevallet, M., Van Dorsselaer, A., Leize-Wagner, E., Rabilloud, T., 2002, A method for detection of overoxidation of cysteines: peroxiredoxins are oxidized in vivo at the active-site cysteine during oxidative stress. Biochem. J. 366: 777–785.

    CAS  PubMed  Google Scholar 

  • Wong, C.M., Siu, K.L., Jin, D.Y., 2004, Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J. Biol. Chem. 279: 23207–23213.

    Article  CAS  PubMed  Google Scholar 

  • Wood, Z.A., Poole, L.B., Hantgan, R.R., Karplus, P.A., 2002, Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry 41: 5493–5504.

    Article  CAS  PubMed  Google Scholar 

  • Wood, Z.A., Poole, L.B., Karplus, P.A., 2003, Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300: 650–653.

    Article  CAS  PubMed  Google Scholar 

  • Yang, K.S., Kang, S.W., Woo, H.A., Hwang, S.C., Chae, H.Z., Kim, K., Rhee, S.G., 2002, Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 277: 38029–38036.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Morgan, B.A., Veal, E.A. (2007). Functions of Typical 2-Cys Peroxiredoxins in Yeast. In: Flohé, L., Harris, J.R. (eds) Peroxiredoxin Systems. Subcellular Biochemistry, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6051-9_12

Download citation

Publish with us

Policies and ethics