Skip to main content

On Fractional Variational Principles

  • Chapter
Advances in Fractional Calculus

The paper provides the fractional Lagrangian and Hamiltonian formulations of mechanical and field systems. The fractional treatment of constrained system is investigated together with the fractional path integral analysis. Fractional Schrüdinger and Dirac fields are analyzed in details. Keywords Fractional calculus, fractional variational principles, fractional Lagrangian and Hamiltonian, fractional Schrödinger field, oing fractional Dirac field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller KS, Ross B (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York.

    MATH  Google Scholar 

  2. Samko SG, Kilbas AA, Marichev OI (1993) Fractional Integrals and Derivatives - Theory and Applications. Gordon and Breach, Linghorne, PA.

    MATH  Google Scholar 

  3. Oldham KB, Spanier J (1974) The Fractional Calculus. Academic Press, New York.

    MATH  Google Scholar 

  4. Podlubny I (1999) Fractional Differential Equations. Academic Press, New York.

    MATH  Google Scholar 

  5. Hilfer I (2000) Applications of Fractional Calculus in Physics. World Scientific, New Jersey.

    MATH  Google Scholar 

  6. Vinagre BM, Podlubny I, Hernandez A, Feliu V (2000) Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal., 3(3):231-248.

    MATH  MathSciNet  Google Scholar 

  7. Silva MF, Machado JAT, Lopes AM (2005) Modelling and simulation of artificial locomotion systems; Robotica, 23(5):595-606.

    Article  Google Scholar 

  8. Mainardi F (1996) Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons and Fractals, 7(9):1461-1477.

    Article  MATH  MathSciNet  Google Scholar 

  9. Zaslavsky GM (2005) Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford.

    MATH  Google Scholar 

  10. Mainardi F (1996) The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett., 9(6):23-28.

    Article  MATH  MathSciNet  Google Scholar 

  11. Tenreiro Machado JA (2003) A probabilistic interpretation of the fractional order differentiation. Fract. Calc. Appl. Anal., 1:73-80.

    MathSciNet  Google Scholar 

  12. Raberto M, Scalas E, Mainardi F (2002) Waiting-times and returns in high- frequency financial data: an empirical study. Physica A, 314(1-4):749-755.

    Article  MATH  Google Scholar 

  13. Ortigueira MD (2003) On the initial conditions in continuous-time fractional linear systems. Signal Processing, 83(11):2301-2309.

    Article  MATH  Google Scholar 

  14. Agrawal OP (2004) Application of fractional derivatives in thermal analysis of disk brakes. Nonlinear Dynamics, 38(1-4):191-206.

    Article  MATH  Google Scholar 

  15. Tenreiro Machado JA (2001) Discrete-time fractional order controllers. Fract. Calc. Appl. Anal., 4(1):47-68.

    MATH  MathSciNet  Google Scholar 

  16. Lorenzo CF, Hartley TT (2004) Fractional trigonometry and the spiral functions. Nonlinear Dynamics, 38(1-4):23-60.

    Article  MATH  MathSciNet  Google Scholar 

  17. Baleanu D, Avkar T (2004) Lagrangians with linear velocities within Riemann- Liouville fractional derivatives. Nuovo Cimento, 119:73-79.

    Google Scholar 

  18. Baleanu D (2005) About fractional calculus of singular Lagrangians. JACIII, 9(4):395-398.

    MathSciNet  Google Scholar 

  19. Diethelm K, Ford NJ, Freed AD, Luchko Yu (2005) Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Engrg., 194:743-773.

    Article  MATH  MathSciNet  Google Scholar 

  20. Blutzer RL, Torvik PJ (1996) On the fractional calculus model of viscoelastic behaviour. J. Rheology, 30:133-135.

    Google Scholar 

  21. Chatterjee A (2005) Statistical origins of fractional derivatives in viscoelasticity. J. Sound Vibr., 284:1239-1245.

    Article  Google Scholar 

  22. Adolfsson K, Enelund M, Olsson P (2005) On the fractional order model of viscoelasticity. Mechanic of Time-Dependent Mater, 9:15-34.

    Article  Google Scholar 

  23. Metzler R, Joseph K (2000) Boundary value problems for fractional diffusion equations. Physica A, 278:107-125.

    Article  MathSciNet  Google Scholar 

  24. Magin RL (2004) Fractional calculus in bioengineering. Crit. Rev. Biom. Eng., 32(1):1-104.

    Article  Google Scholar 

  25. Zaslavsky GM (2002) Chaos, fractional kinetics, and anomalous transport. Phys. Rep., 371(6):461-580.

    Article  MATH  MathSciNet  Google Scholar 

  26. Rabei EM, Alhalholy TS (2004) Potentials of arbitrary forces with fractional derivatives. Int. J. Mod. Phys. A, 19(17-18):3083-3092.

    Article  MATH  MathSciNet  Google Scholar 

  27. Bauer PS (1931) Dissipative dynamical systems I. Proc. Natl. Acad. Sci., 17:311-314.

    Article  Google Scholar 

  28. Riewe F (1996) Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev., E53:1890-1899.

    MathSciNet  Google Scholar 

  29. Riewe F (1997) Mechanics with fractional derivatives, Phys. Rev. E 55:3581-3592.

    Article  MathSciNet  Google Scholar 

  30. Klimek M (2001) Fractional sequential mechanics-models with symmetric fractional derivatives. Czech. J. Phys., 51, pp. 1348-1354.

    Article  MATH  MathSciNet  Google Scholar 

  31. Klimek M (2002) Lagrangean and Hamiltonian fractional sequential mechanics. Czech. J. Phys. 52:1247-1253.

    Article  MATH  MathSciNet  Google Scholar 

  32. Agrawal OP (2002) Formulation of Euler- Lagrange equations for fractional variational problems. J. Math. Anal. Appl., 272:368-379.

    Article  MATH  MathSciNet  Google Scholar 

  33. Laskin N (2002) Fractals and quantum mechanics. Chaos, 10(4):780-790.

    Article  MathSciNet  Google Scholar 

  34. Laskin N (2000) Fractional quantum mechanics and Lévy path integrals, Phys. Lett., A268(3):298-305.

    MathSciNet  Google Scholar 

  35. Dreisigmeyer DW, Young PM (2003) Nonconservative Lagrangian mechanics: a generalized function approach. J. Phys. A. Math. Gen., 36:8297-8310.

    Article  MATH  MathSciNet  Google Scholar 

  36. Raspini A (2001) Simple solutions of the fractional Dirac equation of order 2/3. Physica Scr., 4:20-22.

    Article  Google Scholar 

  37. Muslih S, Baleanu D (2005) Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives. J. Math. Anal. Appl., 304(3):599-606.

    Article  MATH  MathSciNet  Google Scholar 

  38. Baleanu D, Muslih S (2005) Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives, Physica Scr., 72(2-3):119-121.

    Article  MATH  MathSciNet  Google Scholar 

  39. Muslih SI, Baleanu D (2005) Quantization of classical fields with fractional derivatives. Nuovo Cimento, 120:507-512.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Baleanu, D., Muslih, S.I. (2007). On Fractional Variational Principles. In: Sabatier, J., Agrawal, O.P., Machado, J.A.T. (eds) Advances in Fractional Calculus. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6042-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6042-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6041-0

  • Online ISBN: 978-1-4020-6042-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics