Suboptimum H2 Pseudo-rational Approximations to Fractional-order Linear Time Invariant Systems

  • Dingyü Xue
  • YangQuan Chen

In this paper, we propose a procedure to achieve pseudo-rational approximation to arbitrary fractional-order linear time invariant (FO-LTI ) systems with suboptimum H -norm.


Fractional Order Reduce Order Model Rational Transfer Function Fractional Order Differentiator Step Response Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oldham KB, Spanier J (1974) The Fractional Calculus. Academic Press, New York.MATHGoogle Scholar
  2. 2.
    Samko SG, Kilbas AA, Marichev OI (1987). Fractional integrals and derivatives and some of their applications. Nauka i technika, Minsk, Russia.Google Scholar
  3. 3.
    Miller KS, Ross B (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York.MATHGoogle Scholar
  4. 4.
    Podlubny I (1994) Fractional-order systems and fractional-order controllers. Tech. Rep. UEF-03-94, Slovak Academy of Sciences. Institute of Experimental Physics, Department of Control Engineering. Faculty of Mining, University of Technology. Kosice, Slovakia, November.Google Scholar
  5. 5.
    Lurie BJ (1994) ‘Three-parameter tunable tilt-integral-derivative (TID) controller’. US Patent US5371670.Google Scholar
  6. 6.
    Podlubny I (1999) Fractional-order systems and PIλDµ-controllers. IEEE Trans. Auto. Control, 44(1):208-214.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Oustaloup A, Mathieu B, Lanusse P (1995) The CRONE control of resonant plants: application to a flexible transmission. Eur. J. Contr. 1(2).Google Scholar
  8. 8.
    Oustaloup A, Moreau X, Nouillant M (1996) The CRONE suspension. Contr. Eng. Pract. 4(8):1101-1108.CrossRefGoogle Scholar
  9. 9.
    Raynaud H, Zergaïnoh A (2000) State-space representation for fractional order controllers. Automatica, 36:1017-1021.MATHCrossRefGoogle Scholar
  10. 10.
    Manabe S (1960) The non-integer integral and its application to control systems. JIEE (Japanese Institute of Electrical Engineers) J. 80(860):589-597.Google Scholar
  11. 11.
    Manabe S (1961) The non-integer integral and its application to control systems. ETJ Jpn. 6(3-4):83-87.Google Scholar
  12. 12.
    Oustaloup A (1981) Fractional-order sinusoidal oscilators: optimization and their use in highly linear FM modulators. IEEE Trans. Circ. Syst. 28(10):1007-1009.CrossRefGoogle Scholar
  13. 13.
    Axtell M, Bise EM (1990) Fractional calculus applications in control systems. In: Proceedings of the IEEE 1990 National Aerospace and Electronics Conference, pp. 563-566.Google Scholar
  14. 14.
    Vinagre BM, Chen Y (2002) Lecture notes on fractional calculus applications in automatic control and robotics. In the 41st IEEE CDC2002 Tutorial Workshop # 2, B. M. Vinagre and Y. Chen, eds., pp. 1-310. [Online]
  15. 15.
    JATMG (2002) Special issue on fractional calculus and applications. Nonlinear Dynamics, 29(March):1-385.Google Scholar
  16. 16.
    Ortigueira MD, JATMG (eds) (2003) Special issue on fractional signal processing and applications. Signal Processing, 83(11) November: 2285-2480.Google Scholar
  17. 17.
    Oustaloup A (1995) La Dérivation non Entière. HERMES, Paris.MATHGoogle Scholar
  18. 18.
    Oustaloup A, Sabatier J, Lanusse P (1999) From fractal robustness to CRONE control. Fract. Calc. Appl. Anal. 2(1):1-30.MATHMathSciNetGoogle Scholar
  19. 19.
    Oustaloup A, Mathieu B (1999) La Commande CRONE: du Scalaire au Multi- variable. HERMES, Paris.Google Scholar
  20. 20.
    Petrás I(1999) The fractional-order controllers: methods for their synthesis and application. J. Electr. Eng. 50(9-10):284-288.Google Scholar
  21. 21.
    Oustaloup A, Levron F, Nanot F, Mathieu B (2000) Frequency band complex non integer differentiator: characterization and synthesis. IEEE Trans. Circ. Syst. I: Fundamental Theory and Applications, 47(1) January: 25-40.CrossRefGoogle Scholar
  22. 22.
    Ichise M, Nagayanagi Y, Kojima T (1971) An analog simulation of non-integer order transfer functions for analysis of electrode processes. J. electroanal. chem. 33:253-265.Google Scholar
  23. 23.
    Oldham KB (1973) Semiintegral electroanalysis: analog implementation. Anal. Chem. 45(1):39-47.CrossRefGoogle Scholar
  24. 24.
    Sugi M, Hirano Y, Miura YF, Saito K (1999) Simulation of fractal immittance by analog circuits: an approach to optimized circuits. IEICE Trans. Fundam. (8):1627-1635.Google Scholar
  25. 25.
    Podlubny I, Petráš I, Vinagre BM, O’leary P, Dorcak L (2002) Analogue Realizations of Fractional-Order Controllers. Nonlinear Dynamics, 29(1-4) July: 281-296.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Machado JAT (1997) Analysis and design of fractional-order digital control systems. J. Syst. Anal.-Model.-Simul. 27:107-122.MATHGoogle Scholar
  27. 27.
    Vinagre BM, Petráš I, Merchan P, Dorcak L (2001) Two digital realisation of fractional controllers: application to temperature control of a solid. In: Proceedings of the European Control Conference (ECC2001), pp. 1764-1767.Google Scholar
  28. 28.
    Vinagre BM, Podlubny I, Hernandez A, Feliu V (2000) On realization of fractional- order controllers. In: Proceedings of the Conference Internationale Francophone d’Automatique.Google Scholar
  29. 29.
    Vinagre BM, Podlubny I, Hernandez A, Feliu V (2000) Some approximations of fractional-order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3(3):231-248.MATHMathSciNetGoogle Scholar
  30. 30.
    Chen Y, Moore KL (2002) Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circ. Syst. I: Fundamental Theory and Applications, 49(3): March. 363-367.CrossRefMathSciNetGoogle Scholar
  31. 31.
    Vinagre BM, Chen YQ, Petras I (2003) Two direct Tustin discretization methods for fractional-order differentiator/integrator. J. Franklin Inst. 340(5):349-362.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Chen YQ, Vinagre BM (2003) A new IIR-type digital fractional order differentiator. Signal Processing, 83(11) November: 2359-2365.MATHCrossRefGoogle Scholar
  33. 33.
    Al-Alaoui MA (1993) Novel digital integrator and differentiator. Electron. Lett. 29(4):376-378.CrossRefGoogle Scholar
  34. 34.
    Al-Alaoui MA (1995) A class of second-order integrators and low-pass differentiators. IEEE Trans. Cir. Syst. I: Fundamental Theory and Applications, 42(4):220-223.CrossRefGoogle Scholar
  35. 35.
    Al-Alaoui MA (1997) Filling the gap between the bilinear and the back-ward difference transforms: an interactive design approach. Int. J. Electr. Eng. Educ. 34(4):331-337.Google Scholar
  36. 36.
    Tseng C, Pei S, Hsia S (2000) Computation of fractional derivatives using Fourier transform and digital FIR differentiator. Signal Processing, 80:151-159.MATHCrossRefGoogle Scholar
  37. 37.
    Tseng C (2001) Design of fractional order digital FIR differentiator. IEEE Signal Proc. Lett. 8(3):77-79.CrossRefGoogle Scholar
  38. 38.
    Chen Y, Vinagre BM, Podlubny I (2003) A new discretization method for fractional order differentiators via continued fraction expansion. In Proceedings of The First Symposium on Fractional Derivatives and Their Applications at The 19th Biennial Conference on Mechanical Vibration and Noise, the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (ASME DETC2003), pp. 1-8, DETC2003/VIB.Google Scholar
  39. 39.
    Oustaloup A, Melchoir P, Lanusse P, Cois C, Dancla F (2000) The CRONE toolbox for Matlab. In: Proceedings of the 11th IEEE International Symposium on Computer Aided Control System Design - CACSD.Google Scholar
  40. 40.
    Xue D, Atherton DP (1994) A suboptimal reduction algorithm for linear systems with a time delay. Int. J. Control, 60(2):181-196.MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Åström KJ (1970) Introduction to Stochastic Control Theory. Academic Press, London.MATHGoogle Scholar
  42. 42.
    Press WH, Flannery BP, Teukolsky SA (1986) Numerical Recipes, the Art of Scientific Computing. Cambridge University Press, Cambridge.MATHGoogle Scholar
  43. 43.
    Wang FS, Juang WS, Chan CT (1995) Optimal tuning of PID controllers for single and cascade control loops. Chem. Eng. Comm. 132:15-34.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Dingyü Xue
    • 1
  • YangQuan Chen
    • 2
  1. 1.Institute of Artificial Intelligence and RoboticsNortheastern UniversityPR China
  2. 2.Department of Electrical and Computer EngineeringUtah State UniversityLogan

Personalised recommendations