Skip to main content

Robustness of Fractional-order Boundary Control of Time Fractional Wave Equations with Delayed Boundary Measurement Using the Simple Predictor

  • Chapter
Advances in Fractional Calculus
  • 4052 Accesses

In this paper, we analyse the robustness of the fractional wave equation with a fractional-order boundary controller subject to delayed boundary measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morgül Ö (2002) An exponential stability result for the wave equation, Automatica, 38:731-735.

    Article  MATH  Google Scholar 

  2. Morgül Ö (2001) Stabilization and disturbance rejection for the beam equation, IEEE Trans. Auto. Control, 46(12):1913-1918.

    Article  MATH  Google Scholar 

  3. Conrad F, Morgül Ö (1998) On the stability of a flexible beam with a tip mass, SIAM J. Control Optim. 36(6):1962-1986.

    Article  MATH  MathSciNet  Google Scholar 

  4. Morgül Ö (1998) Stabilization and disturbance rejection for the wave equation, IEEE Trans. Auto. Control, 43(1):89-95.

    Article  MATH  Google Scholar 

  5. Guo B-Z (2001) Riesz basis approach to the stabilization of a flexible beam with a tip mass, SIAM J. Control Optim., 39(6):1736-1747.

    Article  MathSciNet  Google Scholar 

  6. Guo B-Z (2002) Riesz basis property and exponential stability of controlled euler- bernoulli beam equations with variable coefficients, SIAM J. Control Optim., 40(6):1905-1923.

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen G (1979) Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math. Pure. Appl., 58:249-273.

    MATH  Google Scholar 

  8. Chen G, Delfour MC, Krall AM, Payre G (1987) Modelling, stabilization and control of serially connected beams, SIAM J. Contr. Optimiz., 25:526-546.

    Article  MATH  MathSciNet  Google Scholar 

  9. Morgül Ö (2002) On the boundary control of beam equation, In: Proceedings of the 15-th IFAC World Congress on Automatic Control.

    Google Scholar 

  10. Datko R, Lagnese J, Polis MP (1986) An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24:152-156.

    Article  MATH  MathSciNet  Google Scholar 

  11. Datko R (1993) Two examples of ill-posedness with respect to small time delays in stabilized elastic systems, IEEE Trans. Auto. Control, 38(1):163-166.

    Article  MATH  MathSciNet  Google Scholar 

  12. Logemann H, Rebarber R (1998) PDEs with distributed control and delay in the loop: transfer function poles, exponential modes and robustness of stability, Eur. J. Control, 4(4):333-344.

    MATH  Google Scholar 

  13. Logemann H, Rebarber R, Weiss G (1996) Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop, SIAM J. Control Optim., 34(2):572-600.

    Article  MATH  MathSciNet  Google Scholar 

  14. Morgül Ö (1995) On the stabilization and stability robustness against small delays of some damped wave equations, IEEE Trans. Auto. Control, 40(9):1626-1623.

    Article  MATH  Google Scholar 

  15. Liang J, Zhang W, Chen Y (2005) Robustness of boundary control of damped wave equations with large delays at boundary measurement, In: The 16th IFAC World Congress.

    Google Scholar 

  16. Nigmatullin RR (1986) Realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Sol. (b), 133:425-430.

    Article  Google Scholar 

  17. Matignon D, d’Andréa-Novel B (1995) Spectral and time-domain consequences of an integro-differential perturbation of the wave PDE, In: SIAM proceedings of the third international conference on mathematical and numerical aspects of wave propagation phenomena, France, pp. 769-771.

    Google Scholar 

  18. Liang J, Chen YQ, Fullmer R (2003) Simulation studies on the boundary stabilization and disturbance rejection for fractional diffusion-wave equation, In:2004 IEEE American Control Conference.

    Google Scholar 

  19. Caputo M (1967) Linear models of dissipation whose q is almost frequency independent-II, Geophys. J. R. Astronom. Soc., 13:529-539.

    Google Scholar 

  20. Podlubny I (1999) Fractional Differential Equations. Academic Press, San Diego, CA.

    MATH  Google Scholar 

  21. Smith OJM (1957) Closer control of loops with dead time, Chem. Eng. Progress, 53(5):217-219.

    Google Scholar 

  22. Levine W (ed.) (1996) The Control Handbook. CRC Press, Boca Raton, FL, pp. 224-237.

    MATH  Google Scholar 

  23. Wang Q-G, Lee TH, Tan KK (1999) Finite Spectrum Assignment for Time-delay Systems. Springer, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Liang, J., Zhang, W., Chen, Y., Podlubny, I. (2007). Robustness of Fractional-order Boundary Control of Time Fractional Wave Equations with Delayed Boundary Measurement Using the Simple Predictor. In: Sabatier, J., Agrawal, O.P., Machado, J.A.T. (eds) Advances in Fractional Calculus. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6042-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6042-7_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6041-0

  • Online ISBN: 978-1-4020-6042-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics