Skip to main content

Flatness Control of a Fractional Thermal System

  • Chapter

This paper concerns the application of flatness principle to fractional systems. In path planning, the flatness concept is used when the trajectory is fixed (in space and in time), to determine the controls inputs to apply without having to integrate any differential equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fliess M, Lévine J, Martin Ph, Rouchon P (1992) Sur les systèmes non linéaires différentiellement plats, C. R. Acad. Sci. Paris, I-315:619-624.

    Google Scholar 

  2. Fliess M, Lévine J, Martin Ph, Rouchon P (1995) Flatness and defect of nonlinear systems: introductory theory and examples, Int. J. Control, 61(6): 1327-1361.

    Article  MATH  Google Scholar 

  3. Ayadi M (2002) Contributions à la commande des systèmes linéaires plats de dimension finie, PhD thesis, Institut National Polytechnique de Toulouse.

    Google Scholar 

  4. Cazaurang F (1997) Commande robuste des systèmes plats, application à la commande d’une machine synchrone, PhD thesis, Université Bordeaux 1, Paris.

    Google Scholar 

  5. Lavigne L (2003) Outils d’analyse et de synthèse des lois de commande robuste des systèmes dynamiques plats, PhD thesis, Université Bordeaux 1, Paris.

    Google Scholar 

  6. Khalil W, Dombre E (1999) Modélisation, identification et commande des robots, 2ème édition, Editions Hermès, Paris.

    Google Scholar 

  7. Oustaloup A (1995) La dérivation non entière: théorie, synthèse et appli-cations, Traité des Nouvelles Technologies, série automatique, Editions Hermès, Paris.

    Google Scholar 

  8. Orsoni B (2002) Dérivée généralisée en planification de trajectoire et génération de mouvement, PhD thesis, Université Bordeaux, Paris.

    Google Scholar 

  9. Sabatier J, Melchior P, Oustaloup A (2005) A testing bench for fractional system education, Fifth EUROMECH Nonlinear Dynamics Conference (ENOC’05), Eindhoven, The Netherlands, August 7-12.

    Google Scholar 

  10. Cois O (2002) Systèmes linéaires non entiers et identification par modèle non entier: application en thermique, PhD thesis, Université Bordeaux 1, Paris.

    Google Scholar 

  11. Cugnet M, Melchior P, Sabatier J, Poty A, Oustaloup A. (2005) Flatness principle applied to the dynamic inversion of fractional systems, Third IEEE SSD’05, Sousse, Tunisia, March 21-24.

    Google Scholar 

  12. Oustaloup A, Sabatier J, Lanusse P (1999) From fractal robustness to the CRONE control, Fract. Calcul. Appl. Anal. (FCAA): Int. J. Theory Appl., 2 (1):1-30, January.

    MATH  MathSciNet  Google Scholar 

  13. Miller KS, Ross B (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York.

    MATH  Google Scholar 

  14. Podlubny I (1999) Fractional Differential Equations. Academic Press, San Diego.

    MATH  Google Scholar 

  15. Lévine J, Nguyen DV (2003) Flat output characterization for linear systems using polynomial matrices, Syst. Controls Lett., 48:69-75.

    Article  MATH  Google Scholar 

  16. Bitauld L, Fliess M, Lévine J (1997) A flatness based control synthesis of linear systems and applications to windshield wipers, In Proceedings ECC’97, Brussels, July.

    Google Scholar 

  17. Lévine J (2004) On necessary and sufficient conditions for differential flatness, In Proceedings of the IFAC NOLCOS 2004 Conference.

    Google Scholar 

  18. Samko SG, Kilbas AA, Maritchev OI (1987) Integrals and Derivatives of the Fractional Order and Some of Their Applications, Nauka I Tekhnika, Minsk, Russia.

    Google Scholar 

  19. Oldham KB, Spanier J (1974) The Fractional Calculus. Academic Press, New York, London.

    MATH  Google Scholar 

  20. Melchior P, Cugnet M, Sabatier J, Oustaloup A (2005) Flatness control: application to a fractional thermal system, ASME, IDETC/CIE 2005, September 24-28, Long Beach, California.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Melchior, P., Cugnet, M., Sabatier, J., Poty, A., Oustaloup, A. (2007). Flatness Control of a Fractional Thermal System. In: Sabatier, J., Agrawal, O.P., Machado, J.A.T. (eds) Advances in Fractional Calculus. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6042-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6042-7_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6041-0

  • Online ISBN: 978-1-4020-6042-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics