A Fractional Calculus Perspective in the Evolutionary Design of Combinational Circuits

  • Cecília Reis
  • J. A. Tenreiro Machado
  • J. Boaventura Cunha

This paper analyses the performance of a genetic algorithm (GA) in the synthesis of digital circuits using two novel approaches. The first concept consists in improving the static fitness function by including a discontinuity evaluation. The measure of variability in the error of the Boolean table has similarities with the function continuity issue in classical calculus. The second concept extends the static fitness by introducing a fractional-order dynamical evaluation.


Genetic Algorithm Fractional Calculus Truth Table Gray Code Combinational Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zebulum R, Pacheco M, Vellasco M (2001) Evolutionary Electronics: Automatic Design of Electronic Circuits and Systems by Genetic Algorithms. CRC Press, Boca Raton, FL.Google Scholar
  2. 2.
    Koza J (1992) Genetic Programming On the Programming of Computers by means of Natural Selection. MIT Press, Cambridge, MA.MATHGoogle Scholar
  3. 3.
    Miller J, Thompson P, Fogarty T (1997) Algorithms and Evolution Strategies in Engineering and Computer Science: Recent Advancements and Industrial Applications. Wiley, New York.Google Scholar
  4. 4.
    Oldham K, Spanier J (1974) The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York.Google Scholar
  5. 5.
    Miller K, Ross B (eds.) (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York.MATHGoogle Scholar
  6. 6.
    Oustaloup A (1995) Dérivation Non Entier: Théorie, Synthèse et Applications. HERMES, Paris.MATHGoogle Scholar
  7. 7.
    Méhauté A (1991) Fractal Geometries: Theory and Applications. Penton Press, London.MATHGoogle Scholar
  8. 8.
    Westerlund S (2002) Dead Matter Has Memory! Causal Consulting, Kalmar, Sweden.Google Scholar
  9. 9.
    Louis S, Rawlins G (1991) Designer Genetic Algorithms: Genetic Algorithms in Structure Design. In: Proceedings of the Fourth International Conference on Genetic Algorithms, University of California, San Diego.Google Scholar
  10. 10.
    Kalganova T, Miller J, Lipnitskaya N (1998) Multiple Valued Combinational Circuits Synthesised using Evolvable Hardware. In: Proceedings of the Seventh Workshop on Post-Binary Ultra Large Scale Integration Systems, Fukuoka, Japan.Google Scholar
  11. 11.
    Torresen J (1998) A Divide-and-Conquer Approach to Evolvable Hardware. In: Proceedings of the Second International Conference on Evolvable Hardware, Lausanne, Switzerland.Google Scholar
  12. 12.
    Hollingworth G, Smith S, Tyrrell A (2000) The Intrinsic Evolution of Virtex Devices Through Internet Reconfigurable Logic. In: Proceedings of the Third International Conference on Evolvable Systems, Edinburgh, UK.Google Scholar
  13. 13.
    Vassilev V, Miller J (2000) Scalability Problems of Digital Circuit Evolution. In: Proceedings of the Second NASA/DOD Workshop on Evolvable Hardware, PaloAlto, CA.Google Scholar
  14. 14.
    Gordon T, Bentley P (2002) Towards Development in Evolvable Hardware. In: Proceedings of the NASA/DOD Conference on Evolvable Hardware, Washington DC.Google Scholar
  15. 15.
    Sano Y, Kita H (2000) Optimization of Noisy Fitness Functions by means of Genetic Algorithms using History of Search. In: Proceedings of the PPSN VIGoogle Scholar
  16. 16.
    Morrison R (2003) Dispersion-Based Population Initialization. In: Proceedings of the Genetic and Evolutionary Computation Conference, Chicago, IL.Google Scholar
  17. 17.
    Reis C, Machado J, Cunha J (2005) Evolutionary Design of Combinational Circuits using Fractional-Order Fitness. In: Proceedings of the Fifth EUROMECH Nonlinear Dynamics Conference, Eindhoven University of Technology, Holland.Google Scholar
  18. 18.
    Thompson A, Layzell P (1999) Analysis of unconventional evolved electronics. Communications of the ACM, 42(4):71-79.CrossRefGoogle Scholar
  19. 19.
    Coello C, Christiansen A, Aguirre A (1996) Using genetic algorithms to design combinational logic circuits. Intelligent Engineering through Artificial Neural Networks. ASME Press, St. Louis, Missouri, pp. 391-396.Google Scholar
  20. 20.
    Machado J (1997) Analysis and design of fractional-order digital control systems. SAMS J. Syst. Anal., Model. Simul. 27:107-122.MATHGoogle Scholar
  21. 21.
    Reis C, Machado J, Cunha J (2004) Evolutionary design of combinational logic circuits. J. Ad. Comput. Intell. Intell. Inform. 8(5):507-513.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Cecília Reis
    • 1
  • J. A. Tenreiro Machado
    • 1
  • J. Boaventura Cunha
    • 2
  1. 1.Department of Electrical EngineeringInstitute of Engineering of PortoPortugal
  2. 2.Institute of Intelligent Engineering SystemsUniversity of Trás-os-Montes and Alto DouroPortugal

Personalised recommendations