Skip to main content

Dynamic Response of the Fractional Relaxor–Oscillator to a Harmonic Driving Force

  • Chapter
Advances in Fractional Calculus

The so-called fractional relaxor–oscillator, whose time evolution is characterized by an index of fractional order,α, exhibits interesting relaxationoscillation characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hilfer R (2000) Fractional time evolution, In: Hilfer R (ed.), Applications of Fractional Calculus in Physics. World Scientific, Singapore, pp. 87-130.

    Google Scholar 

  2. Metzler R, Klafter J (2000) The Random walk’s Guide to Anomalous Diffusion: A Fractional dynamics Approach, Physics Reports, 339, pp. 1-77.

    Article  MATH  MathSciNet  Google Scholar 

  3. Gorenflo R, Mainardi F (1997) Fractional calculus: integral and differential equations of fractional order, in: Carpinteri A, Mainardi F (eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien, pp. 223-276; http://www.fracalmo.org. Gorenflo R, Mainardi F (1996) Fractional Oscillations and Mittag-Leffler Functions, Preprint No A-14/96, Fachbereich Mathematik und Informatik, Freie Universitaet Berlin, (http://www.math. fuberlin.de/publ/index.html), and Gorenflo R, Mainardi F (1996) Fractional Oscillations and Mittag-Leffler Functions, International Workshop on the Recent Advances in Applied Mathematics (RAAM96), State of Kuwait May 4-7, 1996, Proceedings, Kuwait University, pp. 193- 208.

  4. Gorenflo R, Rutman R (1995) On Ultraslow and on intermediate processes, In: Rusev P, Dimovski I, Kiryakova V (eds.), Transform Methods and Special Functions, Sophia1994, Science Culture and Technology, Singapore.

    Google Scholar 

  5. Mainardi F (1996) Chaos, Solitons Fractals, 7(9):1461-1477.

    Article  MATH  MathSciNet  Google Scholar 

  6. Caputo M, Mainardi F (1971) Linear Models of Dissipation in Anelastic Solids, Rivista. Nuovo Cimento (Ser II), 1, pp. 161-198.

    Article  Google Scholar 

  7. Mainardi F (1994) Fractional relaxation in anelastic solids, J. Alloys Comp., 211/212:534-538.

    Article  Google Scholar 

  8. Gloeckle WG, Nonenmacher TF (1991) Fractional integral operators and fox functions in the theory of viscoelasticity, Macromolecules, 24:6426-6434.

    Article  Google Scholar 

  9. Narahari Achar BN, Hanneken JW, Enck T, Clarke T (2001) Dynamics of the fractional oscillator, Physica A, 297:361-367.

    Article  MathSciNet  Google Scholar 

  10. Narahari Achar BN, Hanneken JW, Clarke T, (2002), Response characteristics of the fractional oscillator, Physica A, 309:275-288. There is a factor rα missing in Eq. (27) of this reference. The corrected form of the kernel is given in Eq. (21a) in the current paper.

    Google Scholar 

  11. Narahari Achar BN, Hanneken JW, Clarle T (2004) Damping characteristics of the fractional oscillator, physica A, 339:311-319. A typographical error in Eq. (13) of this reference has been corrected and the corrected equation appears as Eq. (37) in the current paper.

    Google Scholar 

  12. Tofighi A (2003) The intrinsic damping of the fractional oscillator, Physica A, 329:29-34.

    Article  Google Scholar 

  13. Oldham KB, Spanier J (1974) The Fractional Calculus. Academic Press, New York.

    MATH  Google Scholar 

  14. Miller K, Ross B (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York.

    MATH  Google Scholar 

  15. Podlubny I (1999) Fractional Differential Equations. Academic Press, San Diego.

    MATH  Google Scholar 

  16. Samko SG, Kilbas AA, Marichev OI (1993) Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam.

    MATH  Google Scholar 

  17. Sneddon IN (1972) The Use of Integral Transforms. McGraw-Hill, New York.

    MATH  Google Scholar 

  18. Erdélyi A (1955) Higher Transcendental Functions, Vol. III. McGraw- Hill, New York.

    MATH  Google Scholar 

  19. Marion JB, Thornton ST (1995) Classical Dynamics of Particles and Systems 4th edition. Saunders, Fort Worth.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Achar, B.N.N., Hanneken, J.W. (2007). Dynamic Response of the Fractional Relaxor–Oscillator to a Harmonic Driving Force. In: Sabatier, J., Agrawal, O.P., Machado, J.A.T. (eds) Advances in Fractional Calculus. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6042-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6042-7_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6041-0

  • Online ISBN: 978-1-4020-6042-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics