Skip to main content

Mesoscopic Fractional Kinetic Equations versus a Riemann–Liouville Integral Type

  • Chapter
Advances in Fractional Calculus

It is proved that kinetic equations containing noninteger integrals and derivatives are appeared in the result of reduction of a set of micromotions to some averaged collective motion in the mesoscale region. Key words Generalized Riemann–Liouville fractional integral, universal decoupling procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hilfer R (ed.) (2000) Applications of Fractional Calculus in Physics. World Scientific, Singapore.

    MATH  Google Scholar 

  2. Zaslavsky GM (2002) Phys. Rep., 371:461.

    Article  MATH  MathSciNet  Google Scholar 

  3. Kupferman R (2002) J. Stat. Phys., 114:291.

    Article  MathSciNet  Google Scholar 

  4. Nigmatullin RR, Le Mehaute A (2005) J. Non-Crystalline Solids, 351:28-88.

    Article  Google Scholar 

  5. Orsingher E, Beghin L (2004) Probab. Theory Relat. Fields, 128:141.

    Article  MATH  MathSciNet  Google Scholar 

  6. Del-Castillo-Negrete D, Carreras BA, Lynch VE (2003) Phys. Rev. Lett., 91(1):018302-1.

    Article  Google Scholar 

  7. Zaburdaev VYu, Chukbar KV (2003) JETP Lett., 77:551.

    Article  Google Scholar 

  8. Sornette D (1998) Phys. Rep., 297:239.

    Article  MathSciNet  Google Scholar 

  9. Agrawal OP (2002) Nonlinear Dynamics, 29:145; Agrawal OP (2002) Trans. ASME J. Vibration Acoustics, 124:454.

    Google Scholar 

  10. Narahari Achar BN, Hanneken John W, Clarke T (2004) Physica A, 339:311.

    Article  MathSciNet  Google Scholar 

  11. Deng R, Davies P, Bajaj AK (2003) J. Sound Vibration, 262/3:391.

    Article  Google Scholar 

  12. Schmidt VH, Bohannan G, Arbogast D, Tuthill G (2000) J. Phys. Chem. Solids, 61:283.

    Article  Google Scholar 

  13. Manabe S (2002) Nonlinear Dynamics, 29:251.

    Article  MATH  Google Scholar 

  14. Battaglia J-L, Le Lay L, Bastale J-C, Oustaloup A, Cois O (2000) Int. J. Thermal Sci., 39:374.

    Article  Google Scholar 

  15. Nigmatullin RR (1992) Theor. Math Phys., 90(3):354.

    Article  MathSciNet  Google Scholar 

  16. Rutman RS (1994) Theor. Math. Phys., 100(3):476 (in Russian).

    Article  MathSciNet  Google Scholar 

  17. Rutman RS (1995) Theor. Math. Phys., 105(3):393 (in Russian).

    Article  MathSciNet  Google Scholar 

  18. Le Mehaute A, Nigmatullin RR, Nivanen L (1998) Fleches du Temps et Geometrie Fractale. Hermez, Paris (in French).

    MATH  Google Scholar 

  19. Fu-Yao Ren, Zu-Guo Yu, Feng Su (1996) Phys. Lett. A. 219:59.

    Article  MATH  MathSciNet  Google Scholar 

  20. Zu-Guo Yu, Fu-Yao Ren, Ji Zhou (1997) J. Phys. A. Math. Gen. 30:55-69.

    Article  Google Scholar 

  21. Fu-Yao Ren, Jin-Rong Liang (2000) Physica A, 286:45.

    Article  MATH  Google Scholar 

  22. Babenko Yu I (1986) Heat and Mass Transfer. The method of calculation of heat and diffusion currents. Leningrad, Chemistry (in Russian).

    Google Scholar 

  23. Johansen A, Sornette D, Hansen AE (2000) Physica D, 138:302.

    Article  MATH  MathSciNet  Google Scholar 

  24. Johansen A, Sornette D (1998) Int. J. Mod. Phys., 9:433.

    Article  Google Scholar 

  25. Stauffer D, Sornette D (1998) Physica A, 252:271.

    Article  Google Scholar 

  26. Huang Y, Quillon G, Saleur H, Sornette D (1997) Phys. Rev E., 55(6):6433.

    Article  Google Scholar 

  27. Zubarev DN (1971) Non-Equilibrium Statistical Thermodynamic, Nauka, Moscow (in Russian).

    Google Scholar 

  28. Mori H (1963) Progr. Theor. Phys. 30:578; Zwanzig R (1961) in: Brittin WE, Downs BW, Downs J, Lectures in Theoretical Physics, Interscience Publi-cations, New York, Vol. III, pp. 106-141; Yulmetuev RM, Khusnutdinov NR (1994) J. Phys. A, 27:53-63; Shurygin VYu, Yulmetuev RM (1989) Zh. Eks. Theor. Fiz., 96:938 (Sov. JETP (1989) 69:532 and references therein).

    Google Scholar 

  29. Montroll EW, Shlesinger MF (1984) in: Lebowitz J, Montroll E (eds.) Studies in Statistical Mechanics Vol. 11, p. 1.; Saichev AI, Zaslavsky, GM (1997) Chaos, 7:753.

    Google Scholar 

  30. Zubarev DN, Morozov VG (1983) Physica A., 120:11.

    Article  MathSciNet  Google Scholar 

  31. Nigmatullin RR (1984) Phys. Stat. Sol. (b) 123:739.

    Article  Google Scholar 

  32. Nigmatullin RR, Tayurski DA (1991) Physica A, 175:275.

    Article  MathSciNet  Google Scholar 

  33. Nigmatullin RR (2005) Physica B.: Phys. Condens. Matter, 358:201.

    Article  Google Scholar 

  34. Nigmatullin RR, Osokin SI (2003) J. Signal Proc., 83:2433.

    Google Scholar 

  35. Nigmatullin RR, Osokin SI, Smith G (2003) J. Phys D: Appl. Phys, 36:2281.

    Article  Google Scholar 

  36. Nigmatullin RR, Osokin SI, Smith G (2003) Phys. C.: Condens. Matter 15:3481.

    Article  Google Scholar 

  37. Oldham K, Spanier J. (1974) The Fractional Calculus. Academic Press, New York.

    MATH  Google Scholar 

  38. Abramowitz M, Stegun I (1964) Handbook of Mathematical Functions, National Bureau of Standards, Applied Mathematics Series Vol. 55.

    Google Scholar 

  39. Kohlrausch R (1847) Ann. Phys., 12:393.

    Google Scholar 

  40. Williams G, Watts D (1970) Trans. Faraday Soc., 66:80.

    Article  Google Scholar 

  41. Fractals in Physics (1985) Proceedings of the 6th International Symposium, Triest, Italy, 9-12 July, Pietronero L, Tozatti E (eds.), Elsevier Science.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Nigmatullin, R.R., Trujillo, J.J. (2007). Mesoscopic Fractional Kinetic Equations versus a Riemann–Liouville Integral Type. In: Sabatier, J., Agrawal, O.P., Machado, J.A.T. (eds) Advances in Fractional Calculus. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6042-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6042-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6041-0

  • Online ISBN: 978-1-4020-6042-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics