Skip to main content

Metabolic Engineering of Terpenoid Biosynthesis in Plants

  • Chapter
Applications of Plant Metabolic Engineering

Abstract

Metabolic engineering of terpenoids in plants is a fascinating research topic from two main perspectives. On the one hand, the various biological activities of these compounds make their engineering a new tool for improving a considerable number of traits in crops. These include for example enhanced disease resistance, weed control by producing allelopathic compounds, better pest management, production of medicinal compounds, increased value of ornamentals and fruit and improved pollination. On the other hand, the same plants altered in the profile of terpenoids and their precursor pools make a most important contribution to fundamental studies on terpenoid biosynthesis and its regulation. In this review we describe the recent results with terpenoid engineering, showing that engineering of these compounds and their derivatives in plant cells is feasible, although with some requirements and limitations. For example, in terpenoid engineering experiments crucial factors are the subcellular localization of both the precursor pool and the introduced enzymes, the activity of endogenous plant enzymes which modify the introduced terpenoid skeleton, the costs of engineering in terms of effects on other pathways sharing the same precursor pool and the phytotoxicity of the introduced terpenoids. Finally, we will show that transgenic plants altered in their terpenoid profile exert novel biological activities on their environment, for example influencing insect behavior

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adam, KP, and Zapp, J, 1998, Biosynthesis of the isoprene units of chamomile sesquiterpenes, Phytochemistry 48(6):953–959.

    Article  CAS  Google Scholar 

  • Aharoni, A, Giri, AP, Deuerlein, S, Griepink, F, de Kogel, W-J, Verstappen, FWA, Verhoeven, HA, Jongsma, MA, Schwab, W, and Bouwmeester, HJ, 2003, Terpenoid metabolism in wild-type and transgenic Arabidopsis plants, Plant Cell 15(12):2866–2884.

    Article  PubMed  CAS  Google Scholar 

  • Aharoni, A, Jongsma, MA, and Bouwmeester, HJ, 2005, Volatile science? Metabolic engineering of terpenoids in plants, Trends Plant Sci 10(12):594–602.

    Article  PubMed  CAS  Google Scholar 

  • Aharoni, A, Jongsma, MA, Kim, TY, Ri, MB, Giri, AP, Verstappen, FWA, Schwab, W, and Bouwmeester, HJ, 2006, Metabolic engineering of terpenoid biosynthesis in plants, Phytochemistry Rev:In Press.

    Google Scholar 

  • Baldwin, IT, 2001, An ecologically motivated analysis of plant-herbivore interactions in native tobacco, Plant Physiol 127(4):1449–1458.

    Article  PubMed  CAS  Google Scholar 

  • Bertea, CM, Schalk, M, Karp, F, Maffei, M, and Croteau, R, 2001, Demonstration that menthofuran synthase of mint (Mentha) is a cytochrome P450 monooxygenase: Cloning, functional expression, and characterization of the responsible gene, Arch Biochem Biophys 390(2):279–286.

    Article  PubMed  CAS  Google Scholar 

  • Besumbes, O, Sauret-Gueto, S, Phillips, MA, Imperial, S, Rodriguez-Concepcion, M, and Boronat, A, 2004, Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol, Biotechnol Bioeng 88(2):168–175.

    Article  PubMed  CAS  Google Scholar 

  • Bewley, JD, 1997, Seed germination and dormancy, Plant Cell 9(7):1055–1066.

    Article  PubMed  CAS  Google Scholar 

  • Bick, JA, and Lange, BM, 2003, Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane, Arch Biochem Biophys 415(2):146–154.

    Article  PubMed  CAS  Google Scholar 

  • Bosabalidis, AM, 1996, Ontogenesis, ultrastructure and morphometry of the petiole oil ducts of celery (Apium graveolens L), Flavour Frag J 11(5):269–274.

    Article  Google Scholar 

  • Botella-Pavia, P, Besumbes, O, Phillips, MA, Carretero-Paulet, L, Boronat, A, and Rodriguez-Concepcion, M, 2004, Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors, Plant J 40(2):188–199.

    Article  PubMed  CAS  Google Scholar 

  • Bouwmeester, HJ, Gershenzon, J, Konings, MCJM, and Croteau, R, 1998, Biosynthesis of the monoterpenes limonene and carvone in the fruit of carawayIDemonstration of enzyme activities and their changes with development, Plant Physiol 117(3):901–912.

    Article  PubMed  CAS  Google Scholar 

  • Bouwmeester, HJ, Verstappen, FWA, Posthumus, MA, and Dicke, M, 1999, Spider mite-induced (3S)-(E)-nerolidol synthase activity in cucumber and lima beanThe first dedicated step in acyclic C11-homoterpene biosynthesis, Plant Physiol 121(1):173–180.

    Article  PubMed  CAS  Google Scholar 

  • Bouwmeester, HJ, Kappers, IF, Verstappen, FW, Aharoni, A, Luckerhoff, LLP, Lücker, J, Jongsma, MA, and Dicke, M, 2003, Exploring multi-trophic plant-herbivore interactions for new crop protection methods, in The International Congress Crop Science and Technology, British Crop Protection Council, Alton, UK, Glasgow, 1123–1134.

    Google Scholar 

  • Broun, P, 2004, Transcription factors as tools for metabolic engineering in plants, Curr Opin Plant Biol 7(2):202–209.

    Article  PubMed  CAS  Google Scholar 

  • Capell, T, and Christou, P, 2004, Progress in plant metabolic engineering, Curr Opin Biotech 15(2):148–154.

    Article  PubMed  CAS  Google Scholar 

  • Chappell, J, Wolf, F, Proulx, J, Cuellar, R, and Saunders, C, 1995, Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl Coenzyme-A reductase a rate-limiting step for isoprenoid biosynthesis in plants, Plant Physiol 109(4):1337–1343.

    PubMed  CAS  Google Scholar 

  • Chappell, J, 2002, The genetics and molecular genetics of terpene and sterol origami, Curr Opin Plant Biol 5(2):151–157.

    Article  PubMed  CAS  Google Scholar 

  • Chappell, J, 2004, Valencene synthase – a biochemical magician and harbinger of transgenic aromas, Trends Plant Sci 9(6):266–269.

    Article  PubMed  CAS  Google Scholar 

  • Chen, DH , Ye, HC, and Li, GF, 2000, Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua Ltransgenic plants via Agrobacterium tumefaciens-mediated transformation, Plant Sci 155(2):179–185.

    Article  PubMed  CAS  Google Scholar 

  • Dicke, M, and van Loon, JJA, 2000, Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context, Entomol Exp Appl 97(3):237–249.

    Article  CAS  Google Scholar 

  • Diemer, F, Caissard Jean, C, Moja, S, Chalchat Jean, C, and Jullien, F, 2001, Altered monoterpene composition in transgenic mint following the introduction of 4S-limonene synthase, Plant Physiol Bioch 39(7–8):603–614.

    Article  CAS  Google Scholar 

  • Dudareva, N, Cseke, L, Blanc, VM, and Pichersky, E, 1996, Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the Cbreweri flower, Plant Cell 8(7):1137–1148.

    Article  PubMed  CAS  Google Scholar 

  • Dudareva, N, Pichersky, E, and Gershenzon, J, 2004, Biochemistry of Plant Volatiles, Plant Physiol 135(4):1893–1902.

    Article  PubMed  CAS  Google Scholar 

  • Dudareva, N, Andersson, S, Orlova, I, Gatto, N, Reichelt, M, Rhodes, D, Boland, W, and Gershenzon, J, 2005, The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers, P Natl Acad Sci USA 102(3):933–938.

    Article  CAS  Google Scholar 

  • El Tamer, MK, Smeets, M, Holthuysen, N, Lücker, J, Tang, A, Roozen, J, Bouwmeester, HJ, and Voragen, AGJ, 2003, The influence of monoterpene synthase transformation on the odour of tobacco, J Biotechnol 106(1):15–21.

    Article  PubMed  CAS  Google Scholar 

  • Estevez, JM, Cantero, A, Reindl, A, Reichler, S, and Leon, P, 2001, 1-deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants, J Biol Chem 276(25):22901–22909.

    Article  PubMed  CAS  Google Scholar 

  • Fahn, A, 1979, Secretory Tissues in Plants, Academic Press, London, pp 302.

    Google Scholar 

  • Fray, RG, Wallace, A, Fraser, PD, Valero, D, Hedden, P, Bramley, PM, and Grierson, D, 1995, Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway, Plant J 8(5):693–701.

    Article  CAS  Google Scholar 

  • Galili, G, Galili, S, Lewinsohn, E, and Tadmor, Y, 2002, Genetic, molecular, and genomic approaches to improve the value of plant foods and feeds, Crit Rev Plant Sci 21(3):167–204.

    Article  CAS  Google Scholar 

  • Gershenzon, J, Maffei, M, and Croteau, R, 1989, Biochemical and histochemical localization of monoterpene biosynthesis in the glandular trichomes of spearmint (Mentha spicata), Plant Physiol 89(4):1351–1357.

    PubMed  CAS  Google Scholar 

  • Gershenzon, J, and Croteau, RB, 1993, Terpenoid biosynthesis: the basic pathway and formation of monoterpenes, sesquiterpenes and diterpenes, in: Lipid metabolism in plants, Moore, TS, ed, CRC Press, Boca Raton, pp 340–388.

    Google Scholar 

  • Gershenzon, J, McConkey, ME, and Croteau, RB, 2000, Regulation of monoterpene accumulation in leaves of peppermint, Plant Physiol 122(1):205–214.

    Article  PubMed  CAS  Google Scholar 

  • Han, JL, Liu, BY, Ye, HC, Wang, H, Li, ZQ, and Li, GF, 2006, Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L, Journal of Integrative Plant Biology 48(4):482–487.

    Article  CAS  Google Scholar 

  • Harker, M, Hellyer, A, Clayton, JC, Duvoix, A, Lanot, A, and Safford, R, 2003, Co-ordinate regulation of sterol biosynthesis enzyme activity during accumulation of sterols in developing rape and tobacco seed, Planta 216(4):707–715.

    PubMed  CAS  Google Scholar 

  • Haudenschild, C, and Croteau, R, 1998, Molecular engineering of monoterpene production, Genet Eng 20:267–280.

    Google Scholar 

  • Hemmerlin, A, Hoeffler, JF, Meyer, O, Tritsch, D, Kagan, IA, Grosdemange-Billiard, C, Rohmer, M, and Bach, TJ, 2003, Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in Tobacco Bright Yellow-2 cells, J Biol Chem 278(29):26666–26676.

    Article  PubMed  CAS  Google Scholar 

  • Hohn, TM, and Ohlrogge, JB, 1991, Expression of a fungal sesquiterpene cyclase gene in transgenic tobacco, Plant Physiol 97(1):460–462.

    Article  PubMed  CAS  Google Scholar 

  • Hori, M, 1998, Repellency of rosemary oil against Myzus persicae in a laboratory and in a screenhouse, J Chem Ecol 24(9):1425–1432.

    Article  CAS  Google Scholar 

  • Izumi, S, Takashima, O, and Hirata, T, 1999, Geraniol is a potent inducer of apoptosis-like cell death in the cultured shoot primordia of Matricaria chamomilla, Biochem Biophys Res Commun 259(3):519–522.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M, 1982, Plants, insects, and man – their interrelationships, Econ Bot 36(3):346–354.

    CAS  Google Scholar 

  • Jongsma, MA, 2004, Novel genes for control and deterrence of sucking insect pests, in ISB News Report, November, 1–4 http://wwwisbvtedu/news/2004/Nov04pdf.

    Google Scholar 

  • Kappers, IF, Aharoni, A, van Herpen, T, Luckerhoff, LLP, Dicke, M, and Bouwmeester, HJ, 2005, Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis, Science 309(5743):2070–2072.

    Article  PubMed  CAS  Google Scholar 

  • Krasnyanski, S, May, RA, Loskutov, A, Ball, TM, and Sink, KC, 1999, Transformation of the limonene synthase gene into peppermint (Mentha x piperita L) and preliminary studies on the essential oil profiles of single transgenic plants, Theor Appl Genet 99(3–4):676–682.

    Article  CAS  Google Scholar 

  • Laule, O, Furholz, A, Chang, HS, Zhu, T, Wang, X, Heifetz, PB, Gruissem, W, and Lange, BM, 2003, Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana, P Natl Acad Sci USA 100(11):6866–6871.

    Article  CAS  Google Scholar 

  • Lavy, M, Zuker, A, Lewinsohn, E, Larkov, O, Ravid, U, Vainstein, A, and Weiss, D, 2002, Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene, Mol Breeding 9(2):103–111.

    Article  CAS  Google Scholar 

  • Lewinsohn, E, Schalechet, F, Wilkinson, J, Matsui, K, Tadmor, Y, Nam, KH, Amar, O, Lastochkin, E, Larkov, O, Ravid, U, Hiatt, W, Gepstein, S, and Pichersky, E, 2001, Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits, Plant Physiol 127(3):1256–1265.

    Article  PubMed  CAS  Google Scholar 

  • Little, DB, and Croteau, RB, 1999, Biochemistry of essential oil terpenes – A thirty year overview, in: Flavor Chemistry: 30 Years of Progress, Teranishi, R, and Wick, EL, ed, Kluwer Academic/ Plenum Publishers, New York, pp 239–253.

    Google Scholar 

  • Lücker, J, Bouwmeester, HJ, Schwab, W, Blaas, J, van der Plas, LHW, and Verhoeven, HA, 2001, Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-β-D-glucopyranoside, Plant J 27(4):315–324.

    Article  PubMed  Google Scholar 

  • Lücker, J, 2002, Metabolic Engineering of Monoterpene Biosynthesis in Plants, PhD Thesis, Wageningen University, pp 168.

    Google Scholar 

  • Lücker, J, El Tamer, MK, Schwab, W, Verstappen, FWA, van der Plas, LHW, Bouwmeester, HJ, and Verhoeven, HA, 2002, Monoterpene biosynthesis in lemon (Citrus limon): cDNA isolation and functional analysis of four monoterpene synthases, Eur J Biochem 269(13):3160–3171.

    Article  PubMed  CAS  Google Scholar 

  • Lücker, J, Schwab, W, van Hautum, B, Blaas, J, van der Plas, LHW, Bouwmeester, HJ, and Verhoeven, HA, 2004a, Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon, Plant Physiol 134(1):510–519.

    Article  CAS  Google Scholar 

  • Lücker, J, Schwab, W, Franssen, MCR, van der Plas, LHW, Bouwmeester, HJ, and Verhoeven, HA, 2004b, Metabolic engineering of monoterpene biosynthesis: Two-step production of (+)-trans-isopiperitenol by tobacco, Plant J 39(1):135–145.

    Article  CAS  Google Scholar 

  • Lücker, J, Verhoeven, HA, van der Plas, LHW, and Bouwmeester, HJ, 2006, Molecular engineering of floral scent, in: Biology of Floral Scent, Dudareva, N, and Pichersky, E, ed, CRC Press, Boca Raton, pp 321–337.

    Google Scholar 

  • Mahmoud, SS, and Croteau, R, 2001, Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase, P Natl Acad Sci USA 98(15):8915–8920.

    Article  CAS  Google Scholar 

  • Mahmoud, SS, and Croteau, RB, 2002, Strategies for transgenic manipulation of monoterpene biosynthesis in plants, Trends Plant Sci 7(8):366–373.

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud, SS, Williams, M, and Croteau, R, 2004, Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil, Phytochemistry 65(5):547–554.

    Article  PubMed  CAS  Google Scholar 

  • Masferrer, A, Arro, M, Manzano, D, Schaller, H, Fernandez-Busquets, X, Moncalean, P, Fernandez, B, Cunillera, N, Boronat, A, and Ferrer, A, 2002, Overexpression of Arabidopsis thaliana farnesyl diphosphate synthase (FPS1S) in transgenic Arabidopsis induces a cell death/senescence-like response and reduced cytokinin levels, Plant J 30(2):123–132.

    Article  PubMed  CAS  Google Scholar 

  • McCaskill, D, and Croteau, R, 1998, Some caveats for bioengineering terpenoid metabolism in plants, Trends Biotechnol 16(8):349–355.

    Article  CAS  Google Scholar 

  • Ohara, K, Ujihara, T, Endo, T, Sato, F, and Yazaki, K, 2003, Limonene production in tobacco with Perilla limonene synthase cDNA, J Exp Bot 54(393):2635–2642.

    Article  PubMed  CAS  Google Scholar 

  • Outchkourov, NS, Peters, J, de Jong, J, Rademakers, W, and Jongsma, MA, 2003, The promoter-terminator of chrysanthemum rbcS1 directs very high expression levels in plants, Planta 216(6):1003–1012.

    PubMed  CAS  Google Scholar 

  • Pichersky, E, and Gershenzon, J, 2002, The formation and function of plant volatiles: perfumes for pollinator attraction and defense, CurrOpinPlant Biol 5(3):237–243.

    CAS  Google Scholar 

  • Rodriguez-Concepcion, M, and Boronat, A, 2002, Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastidsA metabolic milestone achieved through genomics, Plant Physiol 130(3):1079–1089.

    Article  PubMed  CAS  Google Scholar 

  • Romagni, JG, Allen, SN, and Dayan, FE, 2000, Allelopathic effects of volatile cineoles on two weedy plant species, J Chem Ecol 26(1):303–313.

    Article  CAS  Google Scholar 

  • Sacchettini, JC, and Poulter, CD, 1997, Biochemistry – Creating isoprenoid diversity, Science 277(5333):1788–1789.

    Article  PubMed  CAS  Google Scholar 

  • Sandmann, G, Romer, S, and Fraser, PD, 2006, Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants, Metabol Eng 8(4):291–302.

    Article  CAS  Google Scholar 

  • Schaller, H, Grausem, B, Benveniste, P, Chye, ML, Tan, CT, Song, CT, and Chua, NH, 1995, Expression of the Hevea brasiliensis (HBK) MullArg 3-hydroxy-3-methylglutaryl-Coenzyme A reductase 1 in tobacco results in sterol overproduction, Plant Physiol 109(3):761–770.

    PubMed  CAS  Google Scholar 

  • Schnee, C, Kollner, TG, Held, M, Turlings, TCJ, Gershenzon, J, and Degenhardt, J, 2006, The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores, P Natl Acad Sci USA 103(4):1129–1134.

    Article  CAS  Google Scholar 

  • Schuhr, CA, Radykewicz, T, Sagner, S, Latzel, C, Zenk, MH, Arigoni, D, Bacher, A, Rohdich, F, and Eisenreich, W, 2003, Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy, Phytochemistry Rev 2(1–2):3–16.

    Article  CAS  Google Scholar 

  • Suga, T, and Hirata, T, 1990, Biotransformation of exogenous substrates by plant cell cultures, Phytochemistry 29(8):2393–2406.

    Article  CAS  Google Scholar 

  • van Poecke, RMP, Posthumus, MA, and Dicke, M, 2001, Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: Chemical, behavioral, and gene-expression analysis, J Chem Ecol 27(10):1911–1928.

    Article  PubMed  Google Scholar 

  • Vaughn, SF, and Spencer, GF, 1991, Volatile monoterpenes inhibit potato tuber sprouting, Am Potato J 68(12):821–831.

    CAS  Google Scholar 

  • Vaughn, SF, and Spencer, GF, 1996, Synthesis and herbicidal activity of modified monoterpenes structurally similar to cimmethylin, Weed Sci 44(1):7–11.

    CAS  Google Scholar 

  • Verlet, N, 1993, Commercial aspects, in: Volatile Oil Crops: their Biology, Biochemistry, and Production, Hay, RKM, and Waterman, PG, ed, Longman Scientific & Technical, Essex, UK, pp 137–174.

    Google Scholar 

  • Wallaart, TE, Bouwmeester, HJ, Hille, J, Poppinga, L, and Maijers, NCA, 2001, Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin, Planta 212(3):460–465.

    Article  PubMed  CAS  Google Scholar 

  • Wang, E, Hall, JT, and Wagner, GJ, 2004, Transgenic Nicotiana tabacum L with enhanced trichome exudate cembratrieneols has reduced aphid infestation in the field, Mol Breeding 13(1):49–57.

    Article  Google Scholar 

  • Wang, EM, Wang, R, De Parasis, J, Loughrin, JH, Gan, SS, and Wagner, GJ, 2001, Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance, Nat Biotechnol 19(4):371–374.

    Article  PubMed  CAS  Google Scholar 

  • Weidenhamer, JD, Macias, FA, Fischer, NH, and Williamson, GB, 1993, Just how insoluble are monoterpenes? J Chem Ecol 19(8):1799–1807.

    Article  CAS  Google Scholar 

  • Weissbecker, B, Schutz, S, Klein, A, and Hummel, HE, 1997, Analysis of volatiles emitted by potato plants by means of a Colorado beetle electroantennographic detector, Talanta 44(12):2217–2224.

    Article  CAS  PubMed  Google Scholar 

  • Wolfertz, M, Sharkey, TD, Boland, W, and Kuhnemann, F, 2004, Rapid regulation of the methylerythritol 4-phosphate pathway during isoprene synthesis, Plant Physiol 135(4):1939–1945.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Lücker, J., Bouwmeester, H.J., Aharoni, A. (2007). Metabolic Engineering of Terpenoid Biosynthesis in Plants. In: Verpoorte, R., Alfermann, A., Johnson, T. (eds) Applications of Plant Metabolic Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6031-1_9

Download citation

Publish with us

Policies and ethics