Skip to main content

Metabolic Engineering in Alkaloid Biosynthesis: Case Studies in Tyrosine- and Putrescine-Derived Alkaloids

Molecular engineering in alkaloid biosynthesis

  • Chapter
Applications of Plant Metabolic Engineering

Abstract

Higher plants produce divergent classes of metabolites. Metabolic engineering offers tremendous potential to improve the productivity and quality of these metabolites. We present here case studies on two types of alkaloids. Nicotine and tropane alkaloids, such as hyoscyamine and scopolamine, which are synthesized from putrescine in several solanaceous plants, and have a common evolutional origin. These alkaloids are synthesized in limited cell types in the root and then transported to aerial parts where they accumulate. On the other hand, isoquinoline alkaloids, such as morphine, sanguinarine, and berberine are synthesized from tyrosine in Magnoliaceae, Ranunculaceae, Berberidaceae, Papaveraceae, and many other species. While this biosynthesis may have a monophyletic origin, it is regulated in a more complicated manner. In this review, we summarize the enzymes and genes in biosynthesis, and the potentials and pitfalls in metabolic engineering for alkaloid production

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen RS, Millgate AG, Chitty JA et al. (2004) RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nat Biotechnol 22: 1559–1566.

    Article  PubMed  CAS  Google Scholar 

  • Bird DA, Franceschi VR, Facchini PJ (2003) A tale of three cell-types: alkaloid biosynthesis is localized to sieve elements in opium poppy. Plant Cell 15: 2626–2635.

    Article  PubMed  CAS  Google Scholar 

  • Bock A, Wanner G, Zenk MH (2002) Immunocytological localization of two enzymes involved in berberine biosynthesis. Planta 216: 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Borevitz JO, Xia YJ, Blount J et al. (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12: 2383–2393.

    Article  PubMed  CAS  Google Scholar 

  • Briskin DP (2000) Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol 124: 507–514.

    Article  PubMed  CAS  Google Scholar 

  • Canel C, Lopes-Cardoso MI, Whitmer S et al. (1998) Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205: 414–419.

    Article  PubMed  CAS  Google Scholar 

  • Chintapakorn Y, Hamill JD (2003) Antisense-mediated downregulation of putrescine N-methyltransferase activity in transgenic Nicotiana tabacum L. can lead to elevated levels of anatabine at the expense of nicotine. Plant Mol Biol 53: 87–105.

    Article  PubMed  CAS  Google Scholar 

  • Choi KB, Morishige T, Shitan N et al. (2002) Molecular cloning and characterization of coclaurine N-methyltransferase from cultured cells of Coptis japonica. J Biol Chem 277: 830–835.

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (Secondary metabolites). In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry & Molecular Biology of Plants, Am Soc Plant Physiol, Maryland.

    Google Scholar 

  • Decker G, Wanner G, Zenk MH et al. (2000) Characterization of proteins in latex of the opium poppy (Papaver somniferum) using two-dimensional gel electrophoresis and microsequencing. Electrophoresis 21: 3500–3516.

    Article  PubMed  CAS  Google Scholar 

  • De Luca V, Laflamme P (2001) The expanding universe of alkaloid biosynthesis. Curr. Opin. Plant Biol 4: 225–233.

    Google Scholar 

  • DeScenzo RA, Minocha SC (1993) Modulation of cellular polyamines in tobacco by transfer and expression of mouse ornithine decarboxylase cDNA. Plant Mol Biol 22: 113–127.

    Article  PubMed  CAS  Google Scholar 

  • Dittrich H, Kutchan TM (1991) Molecular cloning, expression, and induction of berberine bridge enzyme, an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogen attack. Proc Natl Acad Sci USA 88: 9969–9973.

    Article  PubMed  CAS  Google Scholar 

  • Dräger B (2005) Tropinone reductases, enzymes at the branch point of tropane alkaloid metabolism. Phytochemistry 67: 327–337.

    Article  CAS  Google Scholar 

  • Dueckershoff K, Ungerb M, Frank A et al. (2005) Modified nicotine metabolism in transgenic tobacco plants expressing the human cytochrome P450 2A6 cDNA. FEBS Lett 579: 2480–2484.

    Article  PubMed  CAS  Google Scholar 

  • Facchini P (2001) Alkaloid biosynthesis in plants: biochemistry,cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66.

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ, De Luca V (1994) Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy. J Biol Chem 269: 26684–26690.

    PubMed  CAS  Google Scholar 

  • Facchini PJ, De Luca V (1995) Phloem-specific expression of tyrosine/dopa decarboxylase genes and the biosynthesis of isoquinoline alkaloids in opium poppy. Plant Cell 7: 1811–1821.

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ, Park SU (2003) Developmental and inducible accumulation of gene transcripts involved in alkaloid biosynthesis in opium poppy. Phytochemistry 64: 177–186.

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ, St-Pierre B (2005) Synthesis and trafficking of alkaloid biosynthetic enzymes. Curr. Opin. Plant Biol 8: 657–666.

    CAS  Google Scholar 

  • Fecker LF, Rügenhagen C, Berlin J (1993) Increased production of cadaverine and anabasine in hairy root cultures of Nicotiana tabacum expressing a bacterial lysine decarboxylase gene. Plant Mol Biol 23: 11–21.

    Article  PubMed  Google Scholar 

  • Frick S, Kutchan TM (1999) Molecular cloning and functional expression of O-methyltransferases common to isoquinoline alkaloid and phenylpropanoid biosynthesis. Plant J 17: 329–339.

    Article  PubMed  CAS  Google Scholar 

  • Fu T-J (1998) Safety considerations for food ingredients produced by plant cell and tissue culture. CHEMTECH 28: 40-46 http://pubs.acs.org/hotartcl/chemtech/98/.

    CAS  Google Scholar 

  • Fujii N, Inui T, Iwasa K et al. (2007) Knockdown of berberine bridge enzyme by RNAi accumulates (S)-reticuline and activates a silent pathway in cultured California poppy cells. Transgenic Res 16: 363–375.

    Article  PubMed  CAS  Google Scholar 

  • Galston AW, Kaur-Sawhney R (1995) Polyamines as endogenous growth regulators. In: Davies PJ (ed) Plant Hormones. Kluwer Academic Pub, Dordrecht, Netherlands.

    Google Scholar 

  • Goossens A, Haekkinen ST, Laakso I et al. (2003a) Secretion of secondary metabolites by ATP-binding cassette transporters in plant cell suspension cultures. Plant Physiol 131: 1161–1164.

    Article  CAS  Google Scholar 

  • Goossens A, Haekkinen ST, Laakso I et al. (2003b) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100: 8595–8600.

    Article  CAS  Google Scholar 

  • Grothe T, Lenz R, Kutchan TM (2001) Molecular characterization of the salutaridinol-7-O-acetyltransferase involved in morphine biosynthesis in opium poppy Papaver somniferum. J Biol Chem 276: 30717–30723.

    Article  PubMed  CAS  Google Scholar 

  • Häkkinen ST, Moyano E, Cusidó RM et al. (2005) Enhanced secretion of tropane alkaloids in Nicotiana tabacum hairy roots expressing heterologous hyoscyamine-6β-hydroxylase. J Exp Bot 56: 2611–2618.

    Article  PubMed  Google Scholar 

  • Hamill JD, Robins RJ, Parr AJ (1990) Over-expressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation. Plant Mol Biol 15: 27–38.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Mitani A, Yamada Y (1990) Diamine oxidase from cultured roots of Hyoscyamus niger. Plant Physiol 93:216–221.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Hayashi A, Amano Y et al. (1991) Hyoscyamine 6β-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localized at the pericycle of the root. J Biol Chem 266: 4648–4653.

    PubMed  CAS  Google Scholar 

  • Hashimoto T, Matsuda J, Yamada Y (1993) Two-step epoxidation of hyoscyamine to scopolamine is catalyzed by bifunctional hyoscyamine 6β-hydroxylase. FEBS Lett 329: 35–39.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Shoji T, Mihara H et al. (1998a) Intraspecific variability of the tandem repeats in Nicotiana putrescine N-methyltransferases. Plant Mol Biol 37: 25–37.

    Article  CAS  Google Scholar 

  • Hashimoto T, Tamaki K, Suzuki K et al. (1998b) Molecular cloning of plant spermidine synthase. Plant Cell Physiol 39:73–79.

    CAS  Google Scholar 

  • Hashimoto T, Yamada Y (1994) Alkaloid biogenesis: Molecular aspects. Annu Rev Plant Physiol Plant Mol Biol 45:257–285.

    Google Scholar 

  • Hashimoto T, Yamada Y (2003) New genes in alkaloid metabolism and transport. Curr. Opin. Biotechnol 14: 163–168.

    CAS  Google Scholar 

  • Haslam SC, Young TW (1992) Purification of N-methylputrescine oxidase from Nicotiana rustica. Phytochemistry 31: 4075–4079.

    Article  CAS  Google Scholar 

  • Hibi N, Higashiguchi S, Hashimoto T et al. (1994) Gene expression in tobacco low-nicotine mutants. Plant Cell 6: 723–735.

    Article  PubMed  CAS  Google Scholar 

  • Huang F-C, Kutchan TM (2000) Distribution of morphinan and benzo[c]phenanthridine alkaloid gene transcript accumulation in Papaver somniferum. Phytochemistry 53: 555–564.

    Article  PubMed  CAS  Google Scholar 

  • Ikezawa N, Tanaka M, Nagayoshi M et al. (2003) Molecular cloning and characterization of CYP719, a methylenedioxy bridge-forming enzyme that belongs to a novel P450 family, from cultured Coptis japonica cells. J Biol Chem 278: 38557–38565.

    Article  PubMed  CAS  Google Scholar 

  • Ikezawa N, Iwasa K, Sato F (2007) Molecular cloning and characterization of methylenedioxy bridge-forming enzymes involved in stylopine biosynthesis in Eschscholzia californica. FEBS J 274: 1019–1035.

    Article  CAS  Google Scholar 

  • Imanishi S, Hashizume K, Nakakita M (1998) Differential induction of methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol Biol 38: 1101–1111.

    Article  PubMed  CAS  Google Scholar 

  • Inui T, Tamura K, Fujii N, et al. (2007) Overexpression of Coptis japonica norcoclaurine 6-O-methyltransferase overcomes the rate-limiting step in benzylisoquinoline alkaloid biosynthesis in cultured Eschscholzia californica. Plant Cell Physiol 48: 252–262.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara S, Yamamoto Y, Ifuku K et al. (2005) Functional analysis of four members of the PsbP family in photosystem II in Nicotiana tabacum using differential RNA interference. Plant Cell Physiol 46: 1885–1893.

    Article  PubMed  CAS  Google Scholar 

  • Jouhikainen K, Lindgren L, Jokelainen T et al. (1999) Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering. Planta 208: 545–551.

    Article  CAS  Google Scholar 

  • Kanegae T, Kajiya H, Amano, Y et al. (1994) Species-dependent expression of the hyoscyamine 6β-hydroxylase gene in the pericycle. Plant Physiol 105: 483–490.

    Article  PubMed  CAS  Google Scholar 

  • Kang YM, Lee OS, Jung HY (2005) Overexpression of hyoscyamine 6β-hydroxylase(h6h) gene and enhanced production of tropane alkaloids in Scopolia parviflora hairy root lines. J Micro Biotech 15 91–98.

    CAS  Google Scholar 

  • Kato A, Uenohara K, Akita M et al. (2006) Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid. Plant Physiol 141: 851–857.

    Article  CAS  Google Scholar 

  • Kato K, Dubouzet E, Kokabu Y, et al. (2007) Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in Coptis japonica. Plant Cell Physio l48:8–18.

    Google Scholar 

  • Kraus PFX, Kutchan TM (1995) Molecular-cloning and heterologous expression of a cDNA-encoding berbamunine synthase, a C-O-phenol-coupling cytochrome-P450 from the higher-plant Berberis stolonifera. Proc Natl Acad Sci USA 92 (6): 2071–2075.

    Article  PubMed  CAS  Google Scholar 

  • Kristensen C, Morant M, Olsen CE et al. (2005) Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc. Natl. Acad. Sci. USA 102(5): 1779–1784.

    Article  PubMed  CAS  Google Scholar 

  • Kutchan T.M (2005a) A role for intra-and intercellular translocation in natural product biosynthesis. Curr. Opin. Plant Biol 8: 292–300.

    CAS  Google Scholar 

  • Kutchan T.M (2005b) Predictive metabolic engineering in plants:still full of surprises. Trends Biotechnol 23: 381–383.

    Article  CAS  Google Scholar 

  • Lange BM, Wildung MR, Stauber EJ et al. (2000) Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc Natl Acad Sci USA 97: 2934–2939.

    Article  PubMed  CAS  Google Scholar 

  • Lee OS, Kang YM, Jung HY et al. (2005) Enhanced production of tropane alkaloids in Scopolia parviflora by introducing the PMT (putrescine N-methyltransferase) gene. In Vitro Cell Dev. Biol-Plant 41: 167–172.

    CAS  Google Scholar 

  • Leete E (1979) The alkaloids: alkaloids derived from ornithine, lysine and nicotinic acid. In: Bell EA, Charlwood BV (eds) Encyclopedia of Plant Physiology, New Series. Vol 8, Springer-Verlag, Berlin.

    Google Scholar 

  • Leete E (1983) Biosynthesis and metabolism of the tobacco alkaloids. In: Pelletier SW (ed) Alkaloids: Chemical and Biological Perspectives. Vol 1, John Wiley, New York.

    Google Scholar 

  • Leete E, Liu Y-Y (1973) Metabolism of [2-3H]- and [6-3H]- nicotinic acid in intact Nicotiana tabacum plants. Phytochemistry 12: 593–596.

    Article  CAS  Google Scholar 

  • Liscombe DK, Macleod BP, Loukanina N et al. (2005) Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66: 1374–1393.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AM, Walbot V, Davis RW (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulator-r and regulator-C1. Science 258: 1773–1775.

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud SS, Croteau RB (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci USA 98: 8915–8920.

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud SS, Croteau RB (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7: 366–373.

    Article  PubMed  CAS  Google Scholar 

  • Millgate AG, Pogson BJ, Wilson IW et al. (2004) Morphine-pathway block in top1 poppies. Nature 431: 413–414.

    Article  PubMed  CAS  Google Scholar 

  • Minami M, Dubouzet E, Iwasa K et al. (2007) Functional analysis of norcoclaurine synthase in Coptis japonica, J Biol Chem 282:6274–6282.

    Google Scholar 

  • Misawa M (1994) Plant tissue culture: an alternative for production of useful metabolite. In:FAO AGRICULTURAL SERVICES BULLETIN No. 108, M-06, ISBN 92-5-103391-9,http://www.fao. org/docrep/t0831e/t0831e00.htm#con

    Google Scholar 

  • Moore I, Samalova M, Kurup S (2006) Transactivated and chemically inducible gene expression in plants. Plant J 45: 651–683.

    Article  PubMed  CAS  Google Scholar 

  • Morishige T, Tsujita T, Yamada Y et al. (2000) Molecular characterization of the S-adenosyl-L-methionine: 3′hydroxyl-N-methylcoclaurine 4 ′-O-methyltransferase involved in isoquinoline alkaloid biosynthesis in Coptis japonica. J Biol Chem 275: 23398–23405.

    Article  PubMed  CAS  Google Scholar 

  • Morishige T, Dubouzet E, Choi K.B et al. (2002) Molecular cloning of columbamine O-methyltransferase from cultured Coptis japonica cells. Eur. J. Biochem 269: 5659–5667.

    Article  PubMed  CAS  Google Scholar 

  • Morishige T, Choi KB, Sato F (2004) In vivo bioconversion of tetrahydroisoquinoline by recombinant coclaurine N-methyltransferase. Biosci Biotechnol Biochem 68(4): 939–941.

    Article  PubMed  CAS  Google Scholar 

  • Moyano E, Fornalé S, Palazón J et al. (2002) Alkaloid production in Duboisia hybrid hairy root cultures overexpressing the pmt gene. Phytochemistry 59: 697–702.

    Article  PubMed  CAS  Google Scholar 

  • Moyano E, Jouhikainen K, Tammela P et al. (2003) Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. J Exp Bot 54: 203–221.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima K, Yamashita A, Akama H et al. (1998) Crystal structures of two tropinone reductases: different reaction stereospecificities in the same protein fold. Proc Natl Acad Sci USA 95: 4876–4881.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima K, Kato H, Oda J et al. (1999) Site-directed mutagenesis of putative substrate-binding residues reveals a mechanism controlling the different stereospecificities of two tropinone reductases. J Biol Chem 274: 16563–16568.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima K, Hashimoto T (1999) Two tropinone reductases, that catalyze opposite stereospecific reductions in tropane alkaloid biosynthesis, are localized in plant root with different cell-specific patterns. Plant Cell Physiol 40: 1099–1107.

    PubMed  CAS  Google Scholar 

  • Nelson DR, Schuler MA, Paquette SM et al. (2004) Comparative genomics of rice and arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol 135: 756–772.

    Article  PubMed  CAS  Google Scholar 

  • Ogita S, Uefuji H, Yamaguchi Y et al. (2003) Production of decaffeinated coffee plants. Nature 423: 823.

    Article  PubMed  CAS  Google Scholar 

  • Ohtani M, Shitan N, Sakai K et al. (2005) Characterization of vacular transport of the endogenous alkaloid berberine in Coptis japonica. Plant Physiol 138: 1939–1946.

    Article  CAS  Google Scholar 

  • Ollagnier S, Kervio E, Rétey J (1998) The role and source of 5′-deoxyadenosyl radical in a carbon skeleton rearrangement catalyzed by a plant enzyme. FEBS Lett 437: 309–312.

    Article  PubMed  CAS  Google Scholar 

  • Palazón J, Moyano E, Rcusidó RM et al. (2003) Alkaloid production in Duboisia hybrid hairy roots and plants overexpressing the h6h gene. Plant Sci 165: 1289–1295.

    Article  CAS  Google Scholar 

  • Panicot M, Masgrau C, Borrell A et al. (2002) Effects of putrescine accumulation in tobacco transgenic plants with different expression levels of oat arginine decarboxylase. Physiol Plant 114: 281–287.

    Article  PubMed  CAS  Google Scholar 

  • Park SU, Johnson AG, Penzes-Yost C et al. (1999) Analysis of promoters from tyrosine/ dihydroxyphenylalanine decarboxylase and berberine bridge enzyme genes involved in benzylisoquinoline alkaloid biosynthesis in opium. Plant Mol Biol 40: 121–131.

    Article  PubMed  CAS  Google Scholar 

  • Park SU, Yu M, Facchini PJ (2002) Antisense RNA-mediated suppression of benzophenanthridine alkaloid biosynthesis in transgenic cell cultures of California poppy. Plant Physiol 128: 696–706.

    Article  PubMed  CAS  Google Scholar 

  • Pauli HH, Kutchan TM (1998) Molecular cloning and functional heterologous expression of two alleles encoding (S)-N-methylcoclaurine 3′-hydroxylase (CYP80B1), a new methyl jasmonate-inducible cytochrome P-450-dependent mono-oxygenase of benzylisoquinoline alkaloid biosynthesis. Plant J 13: 793–801.

    Article  PubMed  CAS  Google Scholar 

  • Raskin I, Ribnicky DM, Komarnytsky S et al. (2002) Plants and human health in the twenty-first century. Trends Biotechnol 20: 522–531.

    Article  PubMed  CAS  Google Scholar 

  • Rathbone DA, Bruce NC (2002) Microbial transformation of alkaloids. Curr Opin Microbiol 5: 274–281.

    Article  PubMed  CAS  Google Scholar 

  • Richer U, Rothe G, Fabian AK et al. (2005) Overexpression of tropinone reductases alters alkaloid composition in Atropa belladonna root cultures. J Exp Bot 56: 645–652.

    Article  CAS  Google Scholar 

  • Riecher DE, Timko MP (1999) Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: new clues to the evolutionary origin of cultivated tobacco. Plant Mol Biol 41: 387–401.

    Article  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M et al. (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440: 940–943.

    Article  PubMed  CAS  Google Scholar 

  • Robins RJ, Bachmann P, Woolley JG (1994) Biosynthesis of hyoscyamine involves an intramolecular rearrangement of littorine. J Chem Soc Perkin Trans 1994: 615–619.

    Article  Google Scholar 

  • Rocha P, Stenzel O, Parr A et al. (2002) Functional expression of tropinone reductase I (trI) and hyoscyamine-6β-hydroxylase (h6h) from Hyoscyamus niger in Nicotiana tabacum. Plant Sci 162: 905–913.

    Article  CAS  Google Scholar 

  • Rothe G, Hachiya A, Yamada Y et al. (2003) Alkaloids in plants and root cultures of Atropa belladonna overexpressing putrescine N-methyltransferase. J Exp Bot 54: 2065–2070.

    Article  PubMed  CAS  Google Scholar 

  • Saedler R, Baldwin IT (2004) Virus-induced gene silencing of jasmonate-induced direct defences, nicotine and trypsin proteinase-inhibitors in Nicotiana attenuata. J Exp Bot 55: 151–157.

    Article  PubMed  CAS  Google Scholar 

  • Samanani N, Facchini PJ (2002) Purification and characterization of norcoclaurine synthase. J Biol Chem 277: 33878–33883.

    Article  PubMed  CAS  Google Scholar 

  • Samanani N, Liscombe DK, Facchini PJ (2004) Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis. Plant J 40: 302–313.

    Article  PubMed  CAS  Google Scholar 

  • Samanani N, Park S-U, Facchini PJ, (2005) Cell type-specific localization of transcripts encoding nine consecutive enzymes involved in protoberberine alkaloid biosynthesis. Plant Cell 17:915–926.

    Google Scholar 

  • Sato F, Takeshita N, Fujiwara H et al. (1994) Characterization of Coptis japonica cells with different alkaloid productivities. Plant Cell Tissue Organ Cult 38: 249–256.

    Article  CAS  Google Scholar 

  • Sato F, Hashimoto T, Hachiya A et al. (2001) Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci USA 98: 367–372.

    Article  PubMed  CAS  Google Scholar 

  • Sato F, Yamada Y (in press) Engineering medicinal compounds in cell cultures. In: Bohnert HJ, Nguyen HT (eds) Bioengineering and Molecular Biology of Plant Pathways Volume 1. Elsevier, Amsterdam.

    Google Scholar 

  • Shitan N, Bazin I, Dan K et al. (2003) Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica. Proc Natl Acad Sci USA 100: 751–756.

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Yamada Y, Hashimoto T (2000) Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol 41: 831–839.

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Winz R, Iwasa T et al. (2002) Expression patterns of two tobacco isoflavone reductase-like genes and their possible roles in secondary metabolism in tobacco. Plant Mol Biol 50: 427–440.

    Article  PubMed  CAS  Google Scholar 

  • Siminszky B, Gavilano L, Bowen SW et al. (2005) Conversion of nicotine to nornicotine in Nicotiana tabacum is mediated by CYP82E4, a cytochrome P450 monooxygenase. Proc Natl Acad Sci USA 102: 14919–14924.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair SJ, Murphy KJ, Birch CD et al. (2000) Molecular characterization of quinolinate phosphoribosyltransferase (QPRTase) in Nicotiana. Plant Mol Biol 44: 603–617.

    Article  PubMed  CAS  Google Scholar 

  • Stenzel O, Teuber M, Dräger B (2006) Putrescine N-methyltransferase in Solanum tuberosum L., a calystegine-forming plant. Planta 223: 200–212.

    Article  PubMed  CAS  Google Scholar 

  • Steppuhn A, Gase K, Krock B et al. (2004) Nicotine’s defensive function in nature. PLOS Biol 2: 1074–1079.

    Article  CAS  Google Scholar 

  • Suzuki K, Yamada Y, Hashimoto T (1999a) Expression of Atropa belladonna putrescine N-methyltransferase gene in root pericycle. Plant Cell Physiol 40: 289–297.

    CAS  Google Scholar 

  • Suzuki K, Yun DY, Chen XY et al. (1999b) An Atropa belladonna hyoscyamine 6β-hydroxylase gene is differentially expressed in the root pericycle and anthers. Plant Mol Biol 40: 141–152.

    Article  CAS  Google Scholar 

  • Takeshita N Fujiwara H, Mimura H et al. (1995) Molecular cloning and characterization of S-adenosyl-L-methionine:scoulerine-9-O-methyltransferase from cultured cells of Coptis japonica. Plant Cell Physiol 36: 29–36.

    Google Scholar 

  • Tiburicio AF, Galston AW (1986) Arginine decarboxylase as the source of putrescine for tobacco alkaloids. Phytochemistry 25: 107–110.

    Article  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY et al. (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42: 218–235.

    Article  PubMed  CAS  Google Scholar 

  • Unterlinner B, Lenz R, Kutchan TM (1999) Molecular cloning and functional expression of codeinone reductase: the penultimate enzyme in morphine biosynthesis in the opium poppy Papaver somniferum. Plant J 18: 465–475.

    Article  PubMed  CAS  Google Scholar 

  • Van Der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289: 295–297.

    Article  PubMed  Google Scholar 

  • Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants, Curr. Opin. Biotechnol 13: 181–187.

    Article  CAS  Google Scholar 

  • Voelckel C, Kruegel T, Gase K et al. (2001) Anti-sense expression of putrescine N-methyltransferase confirms defensive role of nicotine in Nicotiana sylvestris against Manduca sexta. Chemoecology 11: 121–126.

    Article  CAS  Google Scholar 

  • Walton NJ, McLauchlan WR (1990) Diamine oxidase and alkaloid production in transformed root cultures of Nicotiana tabacum. Phytochemistry 29: 1455–1457.

    Article  CAS  Google Scholar 

  • Wang E, Wang R, Deparasis J et al. (2001) Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nature Biotech 19: 371–374.

    Article  CAS  Google Scholar 

  • Wang MB, Waterhouse PM (2002) Application of gene silencing in plants. Curr Opin Plant Biol 5(2): 146–150.

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse PM, Helliwell CA (2003) Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet 4: 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Weckwerth W, Fiehn O (2002) Can we discover novel pathways using metabolomic analysis? Curr. Opin. Biotechnol 13: 156–160.

    Article  CAS  Google Scholar 

  • Weid M, Ziegler J, Kutchan TM (2004) The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum. Proc Natl Acad Sci USA 101: 13957–13962.

    Article  PubMed  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA et al. (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27: 581–590.

    Article  PubMed  CAS  Google Scholar 

  • Wink M, and Roberts MF (1998) Compartmentation of alkaloid synthesis, transport, and storage. In: Roberts MF, Wink M (eds) Alkaloids; Biochemistry, Ecology, and Medicinal Applications. Plenum Press, New York.

    Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126 (2): 485–493.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita A, Endo M, Higashi T et al. (2003) Capturing enzyme structure prior to reaction initiation: tropinone reductase-II-substrate complexes. Biochemistry 42: 5566–5573.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki Y, Urano A, Sudo H et al. (2003) Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin-producing plants Phytochemistry 62: 461–470.

    Article  PubMed  CAS  Google Scholar 

  • Yun DJ, Hashimoto T, Yamada Y (1992) Metabolic engineering of medicinal-plants – transgenic Atropa belladonna with an improved alkaloid composition. Proc Natl Acad Sci USA 89: 11799–11803.

    Article  PubMed  CAS  Google Scholar 

  • Yun DJ, Hashimoto T, Yamada Y (1993) Transgenic tobacco plants with two consecutive oxidation reactions catalyzed by hyoscyamine 6β-hydroxylase, Biosci Biotech Biochem 57: 502–503.

    Article  CAS  Google Scholar 

  • Zhang L, Ding R, Chai Y et al. (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci USA 101: 6786–67910.

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotech. Adv 23: 283–333.

    Article  CAS  Google Scholar 

  • Ziegler J, Diaz-Chavez ML, Karamell R et al. (2005) Comparative macroarray analysis of morphine-containing Papaver somniferum and eight morphine-free Papaver species identifies an O-methyltransferase involved in benzylisoquinoline biosynthesis. Planta 222: 458–471.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Sato, F., Inai, K., Hashimoto, T. (2007). Metabolic Engineering in Alkaloid Biosynthesis: Case Studies in Tyrosine- and Putrescine-Derived Alkaloids. In: Verpoorte, R., Alfermann, A., Johnson, T. (eds) Applications of Plant Metabolic Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6031-1_6

Download citation

Publish with us

Policies and ethics