Advertisement

Metabolic Engineering of the Alkaloid Biosynthesis in Plants: Functional Genomics Approaches

  • Kirsi-Marja Oksman-Caldentey
  • Suvi T. Häkkinen
  • Heiko Rischer

Abstract

Numerous pharmaceuticals currently on the market are based on plant-derived compounds. Many of these compounds are still isolated from whole plants, this being the only feasible production method. The exploitation of cell culture systems and biotechnological production of these complex molecules has been limited by the limited knowledge on their biosynthesis. Understanding the complexity of the regulation of plant metabolism has deepened in recent years, due to major advances in plant genomics and metabolomics. A general problem encountered when characterizing the plant metabolome is the extreme diversity of the compounds which sets a challenge to analytical methods. Modern systems biology tools, together with the development of large plant genomics and metabolomics databases will dramatically facilitate the advance in our knowledge of gene-to-metabolite networks in plants

Here we describe recent progress in studies on nicotine, terpenoid indole and tropane alkaloid pathways, and introduce the technology platform which has been developed for the exploration of poorly understood biosynthetic pathways in medicinal plants. This approach, based on functional genomics, has been applied to identify genes involved in alkaloid pathways. Furthermore, it is shown how combinatorial biochemistry can be used for creating entirely novel plant-derived compounds. The great advantage of this technology is that it’s applicable to any plant species, this being particularly important when it comes to exotic medicinal plants. Better understanding of metabolite synthesis and its regulation will be of crucial importance for improving the efficiency and sustainability of plant secondary metabolite production

Keywords

nicotine alkaloids terpenoid indole alkaloids tropane alkaloids functional genomics pathway engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arabidopsis Genome Initiative (2000) Nature 408: 796–826.Google Scholar
  2. Asano N, Nash RJ, Molyneux RJ, Fleet GW (2000) Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic action. Tetrahedron Asymmetry 11: 1645–1680.CrossRefGoogle Scholar
  3. Breyne P, Zabeau M (2001) Genome-wide expression analysis of plant cell cycle modulated genes. Curr Opin Plant Biol 4: 136–142.PubMedCrossRefGoogle Scholar
  4. Breyne P, Dreesen R, Cannoot B, Rombauts D, Vandepoele K, Rombauts S, Vanderhaeghen R, Inzé D, Zabeau M (2003) Quantitative cDNA-AFLP analysis for genome–wide expression studies Mol Gen Genom 269: 173–179.Google Scholar
  5. Burlat V, Oudin A, Courtois M, Rideau M, St-Pierre B (2004) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J 38: 131–141.PubMedCrossRefGoogle Scholar
  6. Chau MD, Walker K, Long R, Croteau R (2004) Regioselectivity of taxoid-O-acyltransferases: heterologous expression and characterization of a new taxadien-5α-ol-O-acyltransferase. Arch Biochem Biophys 430: 237–246.PubMedCrossRefGoogle Scholar
  7. Chelvarajan RL, Fannin FF, Bush LP (1993) Study of nicotine demethylation in Nicotiana otophora. J Agric Food Chem 41: 858–862.CrossRefGoogle Scholar
  8. De Sutter V, Vanderhaegen R, Tilleman S, Lammertyn F, Vanhoutte I, Karimi M, Inzè D, Goossens A, Hilson P (2005) Exploration of jasmonate signalling via automated and standardized transient assays in tobacco cells. Plant J 44: 1065–1076.PubMedCrossRefGoogle Scholar
  9. Dräger B, Funck C, Hoehler A, Mrachatz G, Nahrstedt A, Portsteffen A, Schaal A, Schmidt R (1994) Calystegines as a new group of tropane alkaloids in Solanaceae. Plant Cell Tiss Organ Cult 38: 235–240.CrossRefGoogle Scholar
  10. Dräger B, van Almsick A, Mrachatz G (1995) Distribution of calystegines in several Solanaceae. Planta Med 61: 577–579.PubMedCrossRefGoogle Scholar
  11. Dubey, VS, Bhalla R, Luthra R (2003) An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J Biosci 28: 637–646.PubMedGoogle Scholar
  12. Facchini, PJ, Bird, DA, St-Pierre, B (2004) Can Arabidopsis make complex alkaloids? Trends Plant Sci 9:116–122.PubMedCrossRefGoogle Scholar
  13. Facchini PJ, St-Pierre B (2005) Synthesis and trafficking of alkaloid biosynthetic enzymes. Curr Opin Plant Biol 8: 657–666.PubMedCrossRefGoogle Scholar
  14. Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes Plant Mol Biol 48: 155–171.Google Scholar
  15. Frick S, Kutchan T (1999) Molecular cloning and functional expression of O-methyltransferases common to isoquinoline alkaloid and phenylpropanoid biosynthesis. Plant J 17: 329–339.PubMedCrossRefGoogle Scholar
  16. Frick S, Ounaroon A, Kutchan TM (2001) Combinatorial biochemistry in plants: the case of O-methyltransferases. Phytochemistry 56: 1–4.Google Scholar
  17. Gaertner LS, Murray CL, Morris CE (1998) Transepithelial transport of nicotine and vinblastine in isolated Malpighian tubules of the tobacco hornworm (Manduca sexta) suggestes a P-glycoprotein-like mechanism. J Exp Biol 201: 2637–2645.PubMedGoogle Scholar
  18. Goldmann A, Milat M-L, Ducrot P-H et al. (1990) Tropane derivatives from Calystegia sepium. Phytochemistry 29: 2125–2127.CrossRefGoogle Scholar
  19. Goossens A, Häkkinen ST, Laakso I, Seppänen-Laakso T, Biondi S, deSutter V, Lammertyn F, Nuutila AM, Söderlund H, Zabeau M, Inzè D, Oksman-Caldentey K-M (2003a) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Adac Sci USA 100: 8595–8600.CrossRefGoogle Scholar
  20. Goossens A, Häkkinen ST, Laakso I, Oksman-Caldentey K-M, Inzè D (2003b) Secretion of secondary metabolites by ATP-binding cassette transporters in plant cell suspension cultures. Plant Physiol 131: 1161–1164.CrossRefGoogle Scholar
  21. Hao D-Y, Yeoman MM (1998) Evidence in favour of an oxidative N-demethylation of nicotine to nornicotine in tobacco cell cultures. J Plant Physiol 152: 420–426.Google Scholar
  22. Hashimoto T, Yamada Y (1986) Hyoscyamine 6β-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, in alkaloid-producing root cultures. Plant Physiol 81: 619–625.PubMedCrossRefGoogle Scholar
  23. Hashimoto T, Mitani A, Yamada Y (1990) Diamine oxidase from cultured roots of Hyoscyamus niger. Plant Physiol 93: 216–221.PubMedGoogle Scholar
  24. Hashimoto T, Yun D-J, Yamada Y (1993) Production of tropane alkaloids in genetically engineered root cultures. Phytochemistry 32: 713–718.CrossRefGoogle Scholar
  25. Hashimoto T, Shoji T, Mihara T, Oguri H, Tamaki K, Suzuki K, Yamada Y (1998) Intraspecific variability of the tandem repeats in Nicotiana putrescine N-methyltransferases. Plant Mol Biol 37: 25–37.PubMedCrossRefGoogle Scholar
  26. Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503.PubMedCrossRefGoogle Scholar
  27. Hibi N, Higashiguchi S, Hashimoto T, Yamada Y (1994) Gene expression in tobacco low-nicotine mutants. Plant Cell 6: 723–735.PubMedCrossRefGoogle Scholar
  28. Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana Proc Natl Acad Sci USA 101: 10205–10210.Google Scholar
  29. Häkkinen ST, Rischer H, Laakso I, Maaheimo H, Seppänen-Laakso T, Oksman-Caldentey K-M (2004) Anatalline and other methyl jasmonate inducible nicotine alkaloids from Nicotiana tabacum cv. BY-2 cell cultures. Planta Med 70: 936–941.PubMedCrossRefGoogle Scholar
  30. Häkkinen ST, Moyano E, Cusidò RM, Palazòn J, Piñol MT, Oksman-Caldentey K-M (2005) Enhanced secretion of tropane alkaloids in Nicotiana tabacum hairy roots expressing heterologous hyoscyamine-6β-hydroxylase. J Exp Bot 56: 2611–2618.PubMedCrossRefGoogle Scholar
  31. Heim WG, Sykes KA, Hildreth SB, Sun J, Lu RH, Jelesko JG (2007) Cloning and characterization of a Nicotiana tabacum methylputrescine oxidase transcript. Phytochemistry 68: 454–463.PubMedCrossRefGoogle Scholar
  32. Imaishi H, Yamada T, Ohkawa H (1995) Purification and immunochemical characteristics of NADPH-cytochrome P-450 oxidoreductase from tobacco cultured cells. Biochim Biophys Acta 1246: 53–60.PubMedGoogle Scholar
  33. Jacobs DI, Gaspari M, van der Greef J, van der Heijden R, Verpoorte R (2005) Proteome analysis of the medicinal plant Catharanthus roseus. Planta 221: 690–704.PubMedCrossRefGoogle Scholar
  34. Jasinski M, Stukkens Y, Degand H, Purnelle B, Marchand-Brynaert J, Boutry M (2001) A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13: 1095–1107.PubMedCrossRefGoogle Scholar
  35. Jellum E (1977) Profiling human body fluids in healthy and disease states using gas chromatography and mass spectrometry with special reference to organic acids. J Chromatogr 143: 427–462.PubMedCrossRefGoogle Scholar
  36. Jouhikainen K, Lindgren L, Jokelainen T, Hiltunen R, Teeri TH, Oksman-Caldentey K-M (1999) Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering. Planta 208: 545–551.CrossRefGoogle Scholar
  37. Katoh A, Shoji T, Hashimoto T (2007) Molecular cloning of N-methylputrescine oxidase from tobacco. Plant Cell Physiol 48: 550–554.PubMedCrossRefGoogle Scholar
  38. Keiner R, Kaiser H, Nakajima K, Hashimoto T, Dräger B (2002) Molecular cloning, expression and characterization of tropinone reductase II, an enzyme of the SDR family in Solanum tuberosum (L.). Plant Mol Biol 48: 299–308.PubMedCrossRefGoogle Scholar
  39. Kidd SH, Melillo AA, Lu R-H, Reed DG, Kuno N, Uchida K, Furuya M, Jelesko JG (2006) The A and B loci in tobacco regulate a network of stress response genes, few of which are associated with nicotine biosynthesis. Plant Mol Biol 60: 699–716.PubMedCrossRefGoogle Scholar
  40. Kisaki T, Mizusaki S, Tamaki E (1968) Phytochemical studies on tobacco alkaloids - XI. A new alkaloid in Nicotiana tabacum roots. Phytochemistry 7: 323–327.CrossRefGoogle Scholar
  41. Kolaczkowski M, Kolaczkowska A, Luczynski J, Witek S, Goffeau A (1998) In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb Drug Resist 4: 143–158.Google Scholar
  42. Kolaczkowski M, van der Rest M, Cybularz-Kolaczkowska A, Soumillion JP, Konings WN, Goffeau A (1996) Anticancer drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter PDR5p. J Biol Chem 271: 31543–31548.PubMedCrossRefGoogle Scholar
  43. Kutchan, TM (1995) Alkaloid biosynthesis – the basis for metabolic engineering of medicinal plants. Plant Cell 7: 1059–1079.PubMedCrossRefGoogle Scholar
  44. Kutchan TM (1993) Strictosidine - from Alkaloid to Enzyme to Gene. Phytochemistry 32: 493–505.PubMedCrossRefGoogle Scholar
  45. Landgrebe ME, Leete E (1990) The metabolism of tropinone in intact Datura innoxia plants. Phytochemistry 29: 2521–2524.CrossRefGoogle Scholar
  46. Laurila J, Laakso I, Valkonen JPT, Hiltunen R, Pehu E (1996) Formation of parental-type and novel glycoalkaloids in somatic hybrids between Solanum brevidens and S. tuberosum. Plant Sci 118: 145–155.CrossRefGoogle Scholar
  47. Leduc M, Tikhomiroff C, Cloutier M, Perrier M, Jolicoeur M (2006) Development of a kinetic metabolic model: application to Catharanthus roseus hairy root. Bioproc Biosyst Eng 28: 295–313.CrossRefGoogle Scholar
  48. Leete E (1980) Alkaloids derived from ornithine, lysine and nicotinic acid. In: Bell EA, Charlwood BV (eds) Encyclopedia of plant physiology, new series, secondary plant products, vol 8. Springer-Verlag, Berlin, pp 65–91.Google Scholar
  49. Leete E (1983) Biosynthesis and metabolism of the tobacco alkaloids. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, John Wiley & Sons, New York, pp 85–152.Google Scholar
  50. Leete E, Chedekel MR (1974) Metabolism of nicotine in Nicotiana glauca. Phytochemistry 13: 1853–1859.CrossRefGoogle Scholar
  51. Leete E, Slattery SA (1976) Incorporation of [2-14C]- and [6-14C]nicotinic acid into the tobacco alkaloids. Biosynthesis of anatabine and α-β-dipyridyl. J Am Chem Soc 98: 6326–6330.PubMedCrossRefGoogle Scholar
  52. Legg, PD, Chaplin JF, Collins GB (1969) Inheritance of percent total alkaloids in Nicotiana tabacum L.; populations derived from crosses of low alkaloid lines with burley and flue-cured varieties. J Hered 60: 213–217.Google Scholar
  53. Legg PD, Collins GB (1971) Inheritance of percent total alkaloids in Nicotiana tabacum L. II. genetic effects of two loci in Burley 21 X LA Burley 21 populations. Can J Cyt 13: 287–291.Google Scholar
  54. Li L, He Z, Girdhar KP, Tsuchiya T, Luan S (2002) Functional cloning and characterisation of a plant efflux carrier for multidrug and heavy metal detoxification. J Biol Chem 277: 5360–5368.PubMedCrossRefGoogle Scholar
  55. Littleton J, Rogers T, Falcone D (2005) Novel approaches to plant drug discovery based on high throughput pharmacological screening and genetic manipulation. Life Sci 78: 467–475.PubMedCrossRefGoogle Scholar
  56. Lorence A, Nessler CL (2004) Camptothecin, over four decades of surprising findings. Phytochemistry 65: 2735–2749.PubMedCrossRefGoogle Scholar
  57. Lounasmaa M, Hanhinen P (1998) Biomimetic formation and interconversion in the heteroyohimbine series. Heterocycles 48: 1483–1492.Google Scholar
  58. Matsuda J, Okabe S, Hashimoto T, Yamada Y (1991) Molecular cloning of hyoscyamine 6β-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger. J Biol Chem 266: 9460–9464.PubMedGoogle Scholar
  59. McLauchlan WR, McKee RA, Evans DM (1993) The purification and immunocharacterisation of N-methylputrescine oxidase from transformed root cultures of Nicotiana tabacum l. cv SC58. Planta 191: 440–445.Google Scholar
  60. Memelink J, Verpoorte R, Kijne JW (2001) ORCAnization of jasmonate - responsive gene expression in alkaloid metabolism Trends Plant Sci. 6: 212–219.Google Scholar
  61. Mizusaki S, Tanabe Y, Noguchi M, Tamaki E (1972) N-methylputrescine oxidase from tobacco roots. Phytochemistry 11: 2757–2762.Google Scholar
  62. Morgan JA, Shanks JV (2002) Quantification of metabolic flux in plant secondary metabolism by a biogenetic organizational approach. Metabolic Eng 4: 257–262.CrossRefGoogle Scholar
  63. Nakajima K, Hashimoto T, Yamada Y (1993) Two tropinone reductases with different stereospecifities are short-chain dehydrogenases evolved from a common ancestor. Proc Natl Acad Sci USA 90: 9591–9595.PubMedCrossRefGoogle Scholar
  64. Nugroho LH, Verpoorte R (2002) Secondary metabolism in tobacco. Plant Cell Tissue Organ Cult 68: 105–125.CrossRefGoogle Scholar
  65. Oksman-Caldentey K-M, Inzé D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9: 433–440.PubMedCrossRefGoogle Scholar
  66. Oksman-Caldentey K-M, Inzé D, Oresic M (2004) Connecting genes to metabolites by a systems biology approach. Proc Natl Acad Sci USA 101: 9949–9950.PubMedCrossRefGoogle Scholar
  67. Oksman-Caldentey K-M, Saito K (2005) Integrating genomics and metabolomics for engineering plant metabolite pathways. Curr Opin Biotech 16: 174–179.PubMedCrossRefGoogle Scholar
  68. Oresic M, Clish CB, Davidov EJ, Verheij E, Vogels JTWE, Havekes LM, Neumann E, Adourian A, Naylor S, van der Greef J, Plasterer T (2004) Phenotype characterization using integrated gene transcript, protein and metabolite profiling. Appl Bioinformatics 3: 205–217.PubMedCrossRefGoogle Scholar
  69. Osbourn AE, Qi XQ, Townsend B, Qin B (2003) Dissecting plant secondary metabolism - constitutive chemical defences in cereals. New Phytol 159: 101–108.CrossRefGoogle Scholar
  70. Ounaroon A, Decker, G, Schmidt J, Lottspeich F, Kutchan TM (2003) (R,S)-Reticuline 7-O-methyltransferase and (R,S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum – cDNA cloning and charcterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant Cell 36: 808–819.Google Scholar
  71. Richter U, Rother G, Fabian A-K, Rahfeld B, Dräger B (2005) Overexpression of tropinone reductases alters alkaloid composition in Atropa belldonna root cultures. J Exp Bot 56: 645–652.PubMedCrossRefGoogle Scholar
  72. Rischer H, Oresic M, Seppänen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W, Van Montagu MCE, Inzè D, Oksman-Caldentey K-M, Goossens A (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci USA 103: 5614–5619.PubMedCrossRefGoogle Scholar
  73. Riechers DE, Timko MP (1999) Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: new clues to the evolutionary origin of cultivated tobacco. Plant Mol Biol 41: 387–401.PubMedCrossRefGoogle Scholar
  74. Robins RJ, Bachmann P, Woolley JG (1994a) Biosynthesis of hyoscyamine involves an intramolecular rearrangement of littorine. J Chem Soc Perkin Trans 1: 615–619.CrossRefGoogle Scholar
  75. Robins RJ, Walton NJ, Parr AJ, Aird ELH, Rhodes MJC, Hamill JD (1994b) Progress in the genetic engineering of the pyridine and tropane alkaloid biosynthetic pathways of Solanaceous plants. In: Ellis BE, Kuroki GW, Stafford HA (eds) Genetic engineering of plant secondary metabolism. Plenum Press, New York, pp 1–33.Google Scholar
  76. Rocha P, Stenzel O, Parr A, Walton N, Christou P, Dräger B, Leech MJ (2002) Functional expression of tropinone reductase I (trI) and hyoscyamine-6β-hydroxylase (h6h) from Hyoscyamus niger in Nicotiana tabacum. Plant Sci 162: 905–913.CrossRefGoogle Scholar
  77. Saier MHJr, Paulsen I (2001) Phylogeny of multidrug transporters. Sem Cell Dev Biol 12: 205–213.CrossRefGoogle Scholar
  78. Sakai K, Shitan N, Sato F, Ueda K, Tazaki K (2002) Characterization of berberine transport into Coptis japonica cells and the involvement of ABC protein. J Exp Bot 53: 1879–1886.PubMedCrossRefGoogle Scholar
  79. Sánchez-Fernández R, Davies TGE, Coleman JOD, Rea PA (2001) The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J Biol Chem 276: 30231–31244.PubMedCrossRefGoogle Scholar
  80. Saunders JQ, Bush LP (1979) Nicotine biosynthetic enzyme activities in Nicotiana tabacum L. genotypes with different alkaloid levels. Plant Physiol 64: 236–240.PubMedGoogle Scholar
  81. Shitan N, Bazin I, Dan K, Obata K, Kigawa K, Ueda K, Sato F, Forestier C, Yazaki K (2003) Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica. Proc Natl Acad Sci USA 100: 751–756.PubMedCrossRefGoogle Scholar
  82. Shoji T, Nakajima K, Hashimoto T (2000) Ethylene suppresses jasmonate-inducible gene expression in nicotine biosynthesis. Plant Cell Physiol 41: 1072–1076.PubMedCrossRefGoogle Scholar
  83. Shoji T, Winz R, Iwase T, Nakajima K, Yamada Y, Hashimoto T (2002) Expression patterns of two tobacco isoflavone reductase-like genes and their possible roles in secondary metabolism in tobacco. Plant Mol Biol 50: 427–440.PubMedCrossRefGoogle Scholar
  84. Siminszky B, Gavilano L, Bowen SW, Dewey RE (2005) Conversion of nicotine to nornicotine in Nicotiana tabacum is mediated by CYP82E4, a cytochrome P450 mono-oxygenase. Proc Natl Acad Sci USA 102: 14919–14924.PubMedCrossRefGoogle Scholar
  85. Sinclair SJ, Murphy KJ, Birch CD, Hamill JD (2000) Molecular characterization of quinolinate phosphoribosyltransferase (QPRTase) in Nicotiana. Plant Mol Biol 44: 603–617.PubMedCrossRefGoogle Scholar
  86. St-Pierre B, Vazquez-Flota FA, De Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11: 887–900.PubMedCrossRefGoogle Scholar
  87. Theodoulou FL (2000) Plant ABC transporters. Biochim Biophys Acta 1465: 79–103.PubMedCrossRefGoogle Scholar
  88. Tikunov Y, Lommen A, de Vos CHR, Verhoeven HA, Bino RJ, Hall RD, Bovy AG (2005) A novel approach for non-targeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 139: 1125–1137.PubMedCrossRefGoogle Scholar
  89. Trethewey R (2004) Metabolite profiling as an aid to metabolic engineering. Curr Opin Plant Biol 7: 196–201.PubMedCrossRefGoogle Scholar
  90. Trethewey RN, Krotzky AJ, Willmitzer L (1999) Metabolic profiling: a Rosetta stone for genomics? Curr Opin Plant Biol 2: 83–85.Google Scholar
  91. Tweeddale H, Notley-McRobb L, Ferenci T (1998) Effect of slow growth on metabolism of Escherichia coli, as revealed bu global metabolite pool (“Metabolome”) analysis. J Bacteriol 180: 5109–5116.PubMedGoogle Scholar
  92. van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289: 295–297.PubMedCrossRefGoogle Scholar
  93. van der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology Curr Med Chem 11: 607–628.Google Scholar
  94. Vazquez-Flota FA, De Luca V (1998) Jasmonate modulates development- and light-regulated alkaloid biosynthesis in Catharanthus roseus. Phytochemistry 49:395–402.PubMedCrossRefGoogle Scholar
  95. Verpoorte R (2000) Secondary metabolism. In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Kluwer Academic Publisher, Dordrech, pp 1–29.Google Scholar
  96. Wang JM, Sheehan M, Brookman H, Timko MP (2000) Characterization of cDNAs differentially expressed in roots of tobacco (Nicotiana tabacum cv Burley 21) during the early stages of alkaloid biosynthesis. Plant Sci 158: 19–32.PubMedCrossRefGoogle Scholar
  97. Weid M, Ziefler J, Kutchan TM (2004) The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papver somniferum. Proc Natl Acad Aci USA 101: 13957–13962.CrossRefGoogle Scholar
  98. Winz RA, Baldwin IT (2001) Molecular interactions between the specialist herbovore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. IV. Insect-induced ethylene reduces jasmonate-induced nicotine accumulation by regulating putrescine N-methyltransferase transcripts. Plant Physiol 125: 2189–2202.PubMedCrossRefGoogle Scholar
  99. Zhang L, Ding R, Chai Y, Bonfill M, Moyano E, Oksman-Caldentey K-M, Xu T, Pi Y, Wang Z, Zhang H, Kai G, Liao Z, Sun X, Tang K (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci USA 101: 6786–6791.PubMedCrossRefGoogle Scholar
  100. Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580: 1183–1191.PubMedCrossRefGoogle Scholar
  101. Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8: 301–307.PubMedCrossRefGoogle Scholar
  102. Yu J, Hu S, Wang J, Wong GK-S, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al. (2002) A draft sequence of the rice genome (Oryza sativa l. ssp. indica). Science 296: 79–92.PubMedCrossRefGoogle Scholar
  103. Yun DJ, Hashimoto T, Yamada Y (1992) Metabolic engineering of medicinal plants: transgenic Atropa belladonna with an improved alkaloid composition. Proc Natl Acad Sci USA 89: 11799–11803.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Kirsi-Marja Oksman-Caldentey
    • 1
  • Suvi T. Häkkinen
    • 1
  • Heiko Rischer
    • 1
  1. 1.VTT Technical Research Centre of FinlandP.O. Box 1000Finland

Personalised recommendations