Skip to main content

Overview of Tabletop X-Ray Laser Development at the Lawrence Livermore National Laboratory

  • Conference paper

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 115))

Abstract

It is almost a decade since the first tabletop x-ray laser experiments were implemented at the Lawrence Livermore National Laboratory (LLNL). The decision to pursue the picosecond-driven schemes at LLNL was largely based around the early demonstration of the tabletop Ne-like Ti x-ray laser at the Max Born Institute (MBI) as well as the established robustness of collisional excitation schemes. These picosecond x-ray lasers have been a strong growth area for x-ray laser research. Rapid progress in source development and characterization has achieved ultrahigh peak brightness rivaling the previous activities on the larger facilities. Various picosecond soft-x-ray based applications have benefited from the increased repetition rates. We will describe the activities at LLNL in this area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. J. Rocca et al., Phys. Rev. Lett. 73(16), 2192 - 2195 (1994).

    Article  ADS  Google Scholar 

  2. J. J. Rocca et al., Phys. Rev. Lett. 77(8), 1476 - 1479 (1996).

    Article  ADS  Google Scholar 

  3. B. E. Lemoff et al., Phys. Rev. Lett. 74(9), 1574 - 1577 (1995).

    Google Scholar 

  4. P. V. Nickles et al., SPIE Proceedings 2520, 373 - 378 (1995); P. V. Nickles et al., Phys. Rev. Lett. 78(14), 2748 - 2751 (1997).

    Google Scholar 

  5. D. V. Korobkin et al., Phys. Rev. Lett. 77(26), 5206 - 5209 (1996).

    Article  ADS  Google Scholar 

  6. V. N. Shlyaptsev et al., SPIE Proceedings 2012, 111 - 118 (1993).

    Google Scholar 

  7. J. Nilsen, B. J. MacGowan, L. B. Da Silva, and J. C. Moreno, Phys. Rev. A 48(6), 4682 - 4685 (1993).

    Article  ADS  Google Scholar 

  8. J. Dunn, A. L. Osterheld, R. Shepherd, W. E. White, V. N. Shlyaptsev, A. B. Bullock, and R. E. Stewart, SPIE Proceedings 3156, 114 - 121 (1997).

    Google Scholar 

  9. J. Dunn, A. L. Osterheld, R. Shepherd, W. E. White, V. N. Shlyaptsev, and R. E. Stewart, "Table-Top Transient Collisional Excitation X-ray Laser Research at LLNL: Status June 1997", Lawrence Livermore National Laboratory, Livermore, CA UCRL-ID-127872 (1997).

    Google Scholar 

  10. J. Nilsen, Phys. Rev. A 55(4), 3271 - 3274 (1997).

    Article  ADS  Google Scholar 

  11. J. Dunn, A. L. Osterheld, R. Shepherd, W. E. White, V. N. Shlyaptsev, and R.E. Stewart, Phys. Rev. Lett. 80, 2825 - 2828 (1998).

    Article  ADS  Google Scholar 

  12. COMET has 4 independent, synchronized beams: The two main beams, a third ∼ 20 mJ (1ω or 2ω) short pulse probe beam and a fourth beamthat uses energy from the long pulse arm for either 3 J in 600 ps or ∼ 2 J compressed.

    Google Scholar 

  13. Y. Li, J. Nilsen, J. Dunn, A. L. Osterheld, A. Ryabtsev, and S. Churilov, Phys. Rev. A 58, R2668 - 2671 (1998).

    Article  ADS  Google Scholar 

  14. J. Dunn et al., Opt. Lett. 24, 101 –3 (1999).

    Article  ADS  Google Scholar 

  15. J. Dunn, Y. Li, A. L. Osterheld, J. Nilsen, J. R. Hunter, V. N. Shlyaptsev, Phys. Rev. Lett. 84, 4834 - 7 (2000).

    Article  ADS  Google Scholar 

  16. Y. L. Li, J. Dunn, J. Nilsen, T. W. Barbee, Jr., A. L. Osterheld, and V. N. Shlyaptsev, J. Opt. Soc. Am. B 17, 1098 - 1101 (2000).

    Article  ADS  Google Scholar 

  17. J. Nilsen et al., J. Opt. Soc. Am. B 20, 191 - 194 (2003).

    Article  ADS  Google Scholar 

  18. O. Guilbaud, A. Klisnick, K. Cassou, S. Kazamias, D. Ros, G. Jamelot, D. Joyeux, and D. Phalippou, Europhys. Lett. 74, 823 – 829 (2006).

    Article  ADS  Google Scholar 

  19. H. Fiedorowicz, A. Bartnick, J. Dunn, R. F. Smith, J. R. Hunter, J. Nilsen, A.L. Osterheld, and V. N. Shlyaptsev, Opt. Lett. 26, 1403 - 1405 (2001).

    Article  ADS  Google Scholar 

  20. J. Filevich, K. Kanizay, M. C. Marconi, J. L. A. Chilla, and J. J. Rocca, Opt. Lett.25, 356 - 358 (2000).

    Article  ADS  Google Scholar 

  21. R. F. Smith et al., Phys. Rev. Lett. 89(6), 065004-1 (2002).

    Article  ADS  Google Scholar 

  22. J. Filevich et al., Appl. Opt. 43(19), 3938 - 46 (2004).

    Article  ADS  Google Scholar 

  23. J. Filevich et al., Phys. Rev. Lett. 94, 035005 (2005).

    Article  ADS  Google Scholar 

  24. R. F. Smith et al., Phys. Rev. E 72, 036404 (2005).

    Article  ADS  Google Scholar 

  25. R. F. Smith et al., Opt. Lett. 28, 2261 - 3 (2003).

    Article  ADS  Google Scholar 

  26. J. Dunn et al., SPIE Proceedings 5197, 51 - 59 (2003).

    Google Scholar 

  27. A. Klisnick et al., Phys. Rev. A. 65, 033810 (2002).

    Article  ADS  Google Scholar 

  28. J. Dunn et al., SPIE Proceedings 5197, 43 - 50 (2003).

    Google Scholar 

  29. Y. Abou-Ali et al., Opt. Comm. 215, 397 - (2003).

    Article  ADS  Google Scholar 

  30. A. Klisnick et al., J. Quant. Spectrosc. Radiat. Transf. 99, 370 – 380 (2006).

    Article  ADS  Google Scholar 

  31. D. Benredjem et al., Phys. Rev. A 73, 063820 (2006).

    Article  ADS  Google Scholar 

  32. A. J. Nelson et al., Appl. Phys. Lett. 87, 154102 (2005).

    Article  ADS  Google Scholar 

  33. R. Keenan et al., Phys. Rev. Lett. 94, 103901 (2005).

    Article  ADS  Google Scholar 

  34. T. Munakata et al., Surf. Sci, 532, 1140 – 144 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Dunn, J. et al. (2007). Overview of Tabletop X-Ray Laser Development at the Lawrence Livermore National Laboratory. In: Nickles, P., Janulewicz, K. (eds) X-Ray Lasers 2006. Springer Proceedings in Physics, vol 115. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6018-2_1

Download citation

Publish with us

Policies and ethics