Studies on the zooplankton community of a shallow lagoon of the Southern Baltic Sea: long-term trends, seasonal changes, and relations with physical and chemical parameters

  • Martin Feike
  • Reinhard Heerkloss
  • Thorsten Rieling
  • Hendrik Schubert
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 192)

Abstract

The Darß-Zingst Lagoon, a coastal inlet of the southern Baltic Sea, was subject to extended monitoring. The biomass data of zooplankton from 1969 to 2001 were used to analyze long-term trends and to correlate zooplankton biomass with abiotic factors. The dominant species in the lagoon were the calanoid copepods Eurytemora affinis and Acartia tonsa, and the rotifer Keratella cochlearis f. tecta. In the longterm trend, two pronounced changes in zooplankton biomass and species composition were observed. They are discussed in connection with a shift in dominance from macrophytes to phytoplankton and the invasion of a polychaet species into the lagoon. Significant relations between zooplankton data and abiotic parameters were found. While temperature, precipitation and NAO winter index correlated positively with copepods and negatively with rotifers, the relationships were inversely for pH-value and duration of ice cover.

Keywords

Zooplankton Coastal lagoon Temperature pH Long-term time series Seasonal changes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arndt, E. A., 1994. Struktur und dynamik des macrozoobenthos in der Darß-Zingster boddenkette im laufe der letzten 25 jahre unter besonderer berücksichtigung des makrozoobenthos—entwicklung im saaler bodden von 1986–1990. Rostocker Meeresbiologische Beiträge 2: 93–120.Google Scholar
  2. Arndt, H., 1985. Untersuchungen zur Populationsökologie der Zooplankter eines inneren Küstengewässers der Ostsee. Dissertation A, Universität Rostock, 170 pp.Google Scholar
  3. Bakker, C. & N. De Pauw, 1975. Composition of plankton assemblges of identical salinity ranges in estuarine tidal, and stagnant environments. Netherlands Journal of Sea Research 2: 69–81.Google Scholar
  4. Baretta, J. W. & J. F. P. Malscheart, 1988. Distribution and abundance of the zooplankton of the Ems estuary (North Sea). II. Zooplankton. Netherlands Journal of Sea Research 2: 69–81.CrossRefGoogle Scholar
  5. Baudler, H., 2002. Projekt KEI. Untersuchungen zur Kurzzeitvariabilität ausgewählter Eutrophierungs-Indikatoren im Zingster Strom. 01.09.2000–31.08.2002. Landesamt für Umwelt, Naturschutz und Geologie, 54 pp.Google Scholar
  6. Baudler, H., 2006. Hydrographisches Monitoring der Laborstation Zingst. Rostocker Meeresbiologischer Beiträge 16: 35–45.Google Scholar
  7. Bick, A. & R. Burckhardt, 1989. Erstnachweis von Marenzelleria viridis (Polychaeta, Spionidae) für den Ostseeraum, mit einem Bestimmungsschlüssel der Spioniden der Ostsee. Mitteilungen aus dem Zoologischen Museum in Berlin 65: 237–247.Google Scholar
  8. Brosin, H. J., 1965. Hydrographie und wasserhaushalt der boddenkette des Darß und des zingst. Geophysikalische Veröffentlichungen der Karl-Marx-Universität Leipzig 18: 277–381.Google Scholar
  9. Burdloff, D., S. Gasparini, B. Sautour, H. Etcheber & J. Castel, 2000. Is the copepod egg production in a highly turbid estuary (the Gironde, France) a function of the biochemical composition of seston? Aquatic Ecology 34: 165–175.CrossRefGoogle Scholar
  10. Capuzzo, J. M, 1979. The effect of temperature toxicity of chlorinated cooling waters to marine animals—a preliminary review. Marine Pollution Bulletin 10:45–47.CrossRefGoogle Scholar
  11. Carius, H.-J., 1995. Autökologische Untersuchungen zur Reaktion Ausgewählter Zooplankter auf Abiotische und Biotische Umweltfaktoren Unter Besonderer Berücksichtigung der Wirkung von hohen pH-Werten und Mikroparasiten. Diplomarbeit, Universität Rostock, 75 pp.Google Scholar
  12. Gasparini, S., J. Castel & X. Irigoien, 1999. Impact of suspended particulate matter on egg production of the estuarine copepod, Eurytemora affinis. ICES Journal of Marine Science 22: 195–205.Google Scholar
  13. Georgi, F., 1985. Verteilung und beschaffenheit des sestons in inneren küstengewässern der DDR (Darß-Zingster Boddengewässer) sowie der westlichen und mittleren ostsee unter besonderer berücksichtigung der wasseraustauschprozesse zwischen beiden systemen. Beiträge zur Meereskunde 52: 35–48.Google Scholar
  14. Heerkloss, R., U. Brenning & M. Ring, 1990. Secondary production of calanoids (Copepoda, Crustacea) in Brackish waters of the southern Baltic. Limnologica (Berlin) 20: 65–69.Google Scholar
  15. Heerkloss, R., W. Schnese & B. Adamkiewicz-Chojnacka, 1991a. Eutrophication induced changes of zooplankton communities in coastal regions of the Baltic Sea. Internationale Revue der Gesamten Hydrobiologie 76: 397–404.CrossRefGoogle Scholar
  16. Heerkloss, R., W. Schnese & B. Adamkiewicz-Chojnacka, 1991b. Eutrophication induced changes of zooplankton communities in coastal regions of the Baltic Sea. Internationale Revue der Gesamten Hydrobiologie 76: 397–404.CrossRefGoogle Scholar
  17. Heerkloss, R. & W. Schnese, 1999. A long-term series of zooplankton monitoring of a shallow coastal water of the southern Baltic. Limnologica 29: 317–321.Google Scholar
  18. Heerkloss, R., Th. Rieling & H. Schubert, 2005. Long-term studies of temperature dependent plankton community changes in an estuarine system of the southern baltic sea. icam dossiers nr. 3: Lagoons and coastal wetlands in the global change context: impact and management issues. Proceedings of the international conference, Venice, 26–28 April 2004: 159–164.Google Scholar
  19. Hurrell, J. W., 1995. Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269: 676–679.CrossRefPubMedGoogle Scholar
  20. Irigoien, X., R. N. Head, R. P. Harris, D. Cummings, D. Harbour & B. Meyer-Harms, 2000. Feeding selectivity and egg production of Calanus helgolandicus in the English Channel. Limnology and Oceanography 45:44–55.CrossRefGoogle Scholar
  21. Jansen, W., 1983. Neomysis integer (Leach) (Crustacea, Mysidacea) in der Darß-Zingster Boddenkette-Untersuchungen zur Populationsentwicklung und Leistungsfähigkeit in Abhängigkeit von Umweltfaktoren. Dissertation A, Universität Rostock, 134 pp.Google Scholar
  22. Karabin, A., 1985. Pelagic zooplankton (Rotatoria, Crustacea) variation in the process of lake eutrophication. Ekologia Polska 33: 567–616.Google Scholar
  23. Kimmel, D. G. & M. R. Roman, 2004. Long-term trends in mesozooplankton abundance in Chesapeake Bay, USA: influence of freshwater input. Marine Ecology Progress Series 267: 71–83.Google Scholar
  24. Mehner, Th. & R. Heerkloss, 1994. Direct estimation of food consumption of juvenile fish in a shallow inlet of the southern Baltic. Internationale Revue der Gesamten Hydrobiologie 79: 295–304.CrossRefGoogle Scholar
  25. Mitchell, S. A., 1992. The effect of pH on Brachionus calyciflorus Pallas (Rotifera). Hydrobiologia 245: 87–93.CrossRefGoogle Scholar
  26. Naumenko, E. N., 2000. The dynamics of abundance of the introduced Acartia tonsa Dana in the Vistula Gulf of the Baltic Sea. In G. G. Matishov, V. V. Dnisov, A. D. Chinarina, V. S. Znzerov & E. G. Berestovky, (eds), Species Introducers in the European Seas in Russia. Kol’skij Nauchnyi Tsentr RAN, Apatity (Russia): 113–121.Google Scholar
  27. Paffenhöfer, G.-A. & D. Stearns, 1988. Why is Acartia tonsa (Copepoda, Calanoida) restricted to near shore environments? Marine Ecology Progress Series 42:33–38.Google Scholar
  28. Pourriot, R., 1977. Food and feeding habits of rotifers. Archiv für Hydrobiologie, Beihefte Ergebnisse der Limnologie 8: 243–260.Google Scholar
  29. Ring, M., R. Heerkloss & W. Schnese, 1985. Einfluss von temperatur, pH-Wert und nahrungsqualität unter laborbedingungen auf Eurytemora affinis. Wissenschaftliche Zeitschrift der Wilhelm-Pieck-Universität Rostock, Mathematisch-naturwissenschaftliche Reihe 34: 22–25.Google Scholar
  30. Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.CrossRefGoogle Scholar
  31. Schlungbaum, G, H. Baudler & G. Nausch, 1994a. Die Darß-Zingster Boddenkette—ein typisches Flachwasserästuar an der südlichen Ostseeküste. Rostocker Meeresbiologische Beiträge 2: 5–26.Google Scholar
  32. Schiewer, U., 1990. Werner Schnese and the development of coastal water ecology in Rostock, GDR. Internationale Revue der Gesamten Hydrobiologie 7: 1–13.CrossRefGoogle Scholar
  33. Schiewer, U., 1997. 30 years eutrophication in shallow brackish waters—lessons to be learned. Hydrobiologia 363: 73–79.CrossRefGoogle Scholar
  34. Schlungbaum, G., U. Schiewer & E. A. Arndt, 1994b. Beschaffenheitsentwickung und Klassifizierung der Darß-Zingster Boddengewässer mit ausgewählten Vergleichen zu anderen Bodden und Haffen. Rostocker Meeresbiologische Beiträge 2: 191–213.Google Scholar
  35. Schlungbaum, G., H. Baudler, M. Krech & B. Kwiatkowski, 2001. Die Darß-Zingster bodden—eine studie. Schriftenreihe des Landesamtes für Umwelt, Naturschutz und Geologie. No 1, 209 pp.Google Scholar
  36. Schnese, W., 1973. Relation between phytoplankton and zooplankton in brackish coastal water. Oikos, Supplement 15: 28–33.Google Scholar
  37. Schnese, W., 1975. Estimation of plankton production in shallow inlets of the GDR Baltic coast line. Havsforskningsinstituts Skrift (Helsinki) 239: 131–136.Google Scholar
  38. Schumann, R. & U. Karsten, 2006. Phytoplankton im Zingster Strom der Darß-Zingster Boddenkette-13 Jahre Remesotrophierung. Rostocker Meeresbiologische Beiträge 16: 47–59.Google Scholar
  39. Schumann, R., H. Baudler, Ä. Glass, K. Dümcke & U. Karsten, 2006. Long-term observations on salinity dynamics in a tideless shallow lagoon of the Southern Baltic Sea coast. Journal of Marine Systems: 330–344.Google Scholar
  40. Sikorski, A. V. & A. Bick, 2004. Revision of Marenzelleria Mesnil, 1896 (Spionidae, Polychaeta). Sarsia 89: 253–275.CrossRefGoogle Scholar
  41. Tackx, M. L. M., N. de Pauw, R. van Mieghem, F. zemar, A. Hannouti, S. van Damme, F. Fiers, N. Daro & P. Meire, 2004. Zooplankton in the Schelde estuary, Belgium and the Netherlands. Spatial and temporal patterns. Journal of Plankton Research 26: 133–141.CrossRefGoogle Scholar
  42. Wasmund, N., 1990. Charcteristics of phytoplankton in brackish waters of different trophic levels. Limnologica (Berlin) 20: 47–51.Google Scholar
  43. Wasmund, N. & U. Schiewer, 1994. Überblick zur Ökologie und Produktionsbiologie des Phytoplanktons der Darß-Zingster Boddenkette. Rostocker Meeresbiologische Beiträge 2: 41–60.Google Scholar
  44. Winkler, H. M., 2002. Effects of eutrophication on fish stocks in Baltic lagoons. In Schernewski G. & U. Schiewer (eds), Baltic Coastal Ecosystems. Springer-Verlag, Berlin, 65–74.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Martin Feike
    • 1
  • Reinhard Heerkloss
    • 1
  • Thorsten Rieling
    • 1
  • Hendrik Schubert
    • 1
  1. 1.Institute of Biosciences/Aquatic EcologyUniversity of RostockRostockGermany

Personalised recommendations