Low variation at allozyme loci and differences between age classes at microsatellites in grass goby (Zosterisessor ophiocephalus) populations

  • Paolo Maria Bisol
  • Alessandra Gallini
  • Sabrina Prevedello
  • Enza Rianna
  • Ezio Bernardinelli
  • Anita Franco
  • Lorenzo Zane
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 192)


Allozymes and microsatellites were used to assess the level and distribution of genetic variation in grass goby population samples collected from the Venice Lagoon between October 2001 and May 2002. Eighteen enzymatic loci were examined in 434 individuals, 14 of which resulted to be monomorphic, and 4 (GPI-B*, LDH-B*, PGM-A*, PGM-B*) showed 2 alleles scored in 6 individuals only. Comparison with previous data suggests that genetic variation has been eliminated in the Venice Lagoon population during the last few years at three loci. In contrast, analysis of 11 microsatellites in a subset of 192 individuals revealed substantial molecular variation. Analysis of molecular variance showed a lack of genetic differentiation inside the lagoon with respect to site and date of collection, sex, and level of pollution. Significant variation in allelic frequencies was found at microsatellite loci when small (one year old) males were compared to large males (two and three years old), suggesting that a complex population dynamics occurs in this species. The very low level of polymorphism of allozymes could be due to the evolutionary history of the species, or, considering the difference between small and large males, could be the result of recent effects of drift. The second hypothesis is supported by the comparison with previous allozyme studies of the species in the same area, that suggests that loss of heterozygosity at three loci occurred in the last 10 years.


Genetic variability Gobiidae Adriatic Allozymes Microsatellites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aizawa, T., M. Hatsumi & K. Wakahama, 1994. Systematic study on the Chenogobius species (Family Gobiidae) by analysis of allozyme polymorphisms. Zoological Science 2: 455–465.Google Scholar
  2. Basaglia, F., 1989. Some aspects of isozymes of lactate dehydrogenase and glucosephosphate isomerase in fish. Comparative Biochemistry and Physiology Part B 92: 213–226.CrossRefGoogle Scholar
  3. Basaglia, F., 2002. Multilocus isozyme systems in African lungfish, Protopterus annectens: distribution, differential expression and variation in dipnoans. Comparative Biochemistry and Physiology Part B 131: 89–102.CrossRefGoogle Scholar
  4. Bisol, P. M., 2002. Ecogenetic biodiversity in Zosterisessor ophiocephalus from the lagoon of Venice. I: Gene-enzyme polymorphisms. In Campostrini, P. P. (ed.), Scientific Research and Safeguarding of Venice. Corila Research Program 2001 results. Istituto Veneto SS LL AA, Venezia, 601–608.Google Scholar
  5. Callegarini, C. & D. Ricci, 1973. Lactate dehydrogenase (LDH) isozyme in some species of fresh water, euryhaline and salt water teleosts from the Po plain and its sea-coasts. Bollettino di Zoologia 40: 25–30.Google Scholar
  6. Carvalho, G. R. & L. Hauser, 1998. Advances in the molecular analysis of fish population structure. Italian Journal of Zoology 65: 21–33.CrossRefGoogle Scholar
  7. Critto, A. & A. Marcomini, 2001. Rischio ecologico e inquinamento chimico lagunare. Libreria Editrice Cafoscarina, Milano.Google Scholar
  8. Excoffier, L., P. Smouse & J. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.PubMedGoogle Scholar
  9. Farias, I. P., M. N. Paula-Silva & V. M. Almeida-Val, 1997. No co-expression of LDH-C in Amazon cichlids. Comparative Biochemistry and Physiology Part B 117: 315–319.CrossRefGoogle Scholar
  10. Franco, A., S. Malavasi, F. Pranovi, F. Franzoi & P. Torricelli, 2002. Preliminary data on gonadal development and fecundity in the Grass goby, Zosterisessor ophiocephalus (Pallas, 1811) from the Venice Lagoon (Northern Italy). Acta Adriatica 43: 43–48.Google Scholar
  11. Gallini, A., L. Zane & P. M. Bisol, 2005. Isolation and characterization of microsatellites in Zosterisessor ophiocephalus (Perciformes, Gobiidae). Molecular Ecology Notes 5: 24–26.CrossRefGoogle Scholar
  12. Goudet, R., 2002. Fstat, version Scholar
  13. Hedgecock, D., 1994. Does variance in reproductive success limit effective population sizes of marine organisms? In Beaumont, A. R. (ed.), Genetics and Evolution of Aquatic Organisms. Chapman & Hall, London, 122–134.Google Scholar
  14. Hedgecock, D., V. Chow & R. S. Waples, 1992. Effective population numbers of shell-fish broodstocks estimated from temporal variance in allelic frequencies. Aquaculture 108: 215–232.CrossRefGoogle Scholar
  15. Hutchinson, W. F., C. van Oosterhout, S. I. Rogers & G. R. Carvalho, 2003. Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod (Gadus morhua). Proceeding Royal Society London Ser B: Bio Sci 270: 2125–2132.CrossRefGoogle Scholar
  16. Ikeda, M., M. Nunokawa & N. Taniguchi, 2003. Lack of mitochondrial gene flow between populations of the endangered amphidromous fish Plecoglossus altivelis ryukyuensis inhabiting Amami-oshima Island. Fishery Sciences 69: 1162–1168.CrossRefGoogle Scholar
  17. Mainardi, D., R. Fiorin, A. Franco, P. Franzoi, O. Giovanardi, A. Granzotto, A. Libertini, S. Malavasi, F. Pranovi, F. Riccato & P. Torricelli, 2002. Fish diversity in the Venice Lagoon: preliminary report. In Campostrini, P. P. (ed.), Scientific Research and Safeguarding of Venice. Corila Research Program 2001 results. Istituto Veneto SS LL AA, Venezia, 583–594.Google Scholar
  18. Maltagliati, F., P. Domenici, C. F. Fosch, P. Cossu, M. Casu & A. Castelli, 2003. Small-scale morphological and genetic differentiation in the Mediterranean killifish Aphanius fasciatus (Cyprinodontidae) from a coastal brackish-water pond and an adjacent pool in northern Sardinia. Oceanological Acta 26: 111–119.CrossRefGoogle Scholar
  19. Marconato, A., M. B. Rasotto & C. Mazzoldi, 1996. On the mechanism of sperm release in three gobiid fishes (Teleostei: Gobiidae). Environmental Biology of Fishes 46: 321–327.CrossRefGoogle Scholar
  20. Mazzoldi, C., M. Scaggiante, E. Ambrosin & M. B. Rasotto, 2000. Mating system and alternative male mating tactics in the grass goby Zosterisessor ophiocephalus (Teleostei: Gobiidae). Marine Biology 137: 1041–1048.CrossRefGoogle Scholar
  21. McKay, S. I. & P. J. Miller, 1991. Isozyme criteria in the testing of phyletic relationships between species of Gobius and related Eastern Atlantic-Mediterranean genera (Teleostei: Gobiidae). Journal of Fish Biology 39: 291–299.CrossRefGoogle Scholar
  22. Miller, P. J., 1984. The tokology of Gobioid fishes. In Potts, G. W. & R. J. Wootton (eds), Fish Reproduction: Strategies and Tactics. Academic Press, London, 119–153.Google Scholar
  23. Miller, P. J., M. Serventi, D. Soregaroli, P. Torricelli & G. Gandolfi, 1994. Isozyme genetics and the phylogeny of Italian freshwater gobies (Teleostei: Gobioidei). Journal of Fish Biology 44: 439–451.Google Scholar
  24. Ota, D., M. Marchesan & E. A. Ferrero, 1996. Sperm release behaviour and fertilization in the grass goby. Journal of Fish Biology 49: 246–256.CrossRefGoogle Scholar
  25. Penzo, E., G. Gandolfi, L. Bargelloni, L. Colombo & T. Patarnello, 1998. Messinian salinity crisis and the origin of freshwater lifestyle in Western Mediterranean gobies. Molecular Biology and Evolution 15: 1472–1480.PubMedGoogle Scholar
  26. Pezold, F. & J. M. Grady, 1989. A morphological and allozymic analysis of species in the Gobionellus oceanicus complex (Pisces:Gobiidae). Bulletin of Marine Science 45: 648–663.Google Scholar
  27. Planes, S, M. Parroni & C. Chauvet, 1998. Evidence of limited gene flow in three species of coral reef fishes in the lagoon of New Caledonia. Marine Biology 130: 361–368.CrossRefGoogle Scholar
  28. Raymond, M. & F. Rousset, 1995. Genepop version 1.2: population genetics software for exact tests and ecumenism. The Journal of Heredity 86: 248–249.Google Scholar
  29. Rianna, E., 2003. Biodiversità in Zosterisessor ophiocephalus di due lagune dell’Alto Adriatico. Bachelor thesis (in Italian), University of Padova.Google Scholar
  30. Roff, D. A. & P. Bentzen, 1989. The statistical analysis of mitochondrial DNA polymorphisms: η 2 and the problem of small samples. Molecular Biology and Evolution 6: 539–545.PubMedGoogle Scholar
  31. Ruzzante, D. E., C. T. Taggart & D. Cook, 1996. Spatial and temporal variation in the genetic composition of a larval cod (Gadus morhua) aggregation: cohort contribution and genetic stability. Canadian Journal Fish Aquatic Science 53: 2695–2705.CrossRefGoogle Scholar
  32. Scaggiante, M., C. Mazzoldi, C. W. Petersen & M. B. Rasotto, 1999. Sperm competition and mode of fertilization in the grass goby Zosterisessor ophiocephalus (Teleostei: Gobiidae). The Journal of Experimental Zoology 283: 81–90.CrossRefGoogle Scholar
  33. Schneider, S., D. Roessli & L. Excoffier, 2000. Arlequin ver. 2.000. A Software for Population Genetic Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.Google Scholar
  34. Shaklee, J. B., F. W. Allendorf, D. C. Morizot & G. S. Whitt, 1990. Gene nomenclature for proteincoding loci in fish. Transactions of the American Fisheries Society 119: 2–15.CrossRefGoogle Scholar
  35. Shaklee, J. B. & P. Bentzen, 1998. Genetic identification of stocks of marine fish and shellfish. Bulletin of Marine Science 62: 589–621.Google Scholar
  36. Smith, P. J. & Y. Fujio, 1982. Genetic variation in marine teleosts: high variability in habitat specialists and low variability in habitat generalists. Marine Biology 69: 7–20.CrossRefGoogle Scholar
  37. Sorice, M. & V. Caputo, 1999. Genetic variation in seven goby species (Perciformes: Gobiidae) assessed by electrophoresis and taxonomic inference. Marine Biology 134: 327–333.CrossRefGoogle Scholar
  38. Taylor, M. S. & M. E. Hellberg, 2003. Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299: 107–109.PubMedCrossRefGoogle Scholar
  39. Torricelli, P., S. Malavasi, N. Novarini, F. Pranovi & D. Mainardi, 2000. Elongation of fin rays in parental males of Zosterisessor ophiocephalus (Pisces, Gobiidae). Environmental Biology of Fishes 58: 105–108.CrossRefGoogle Scholar
  40. Wallis, G. P. & J. A. Beardmore, 1984a. An electrophoretic study of the systematic relationships of some closely related goby species (Pisces, Gobiidae). Biological Journal of Linnean Society 22: 107–123.Google Scholar
  41. Wallis, G. P. & J. A. Beardmore, 1984b. Genetic variation and environmental heterogeneity in some closely related goby species. Genetica 62: 223–237.CrossRefGoogle Scholar
  42. Ward, R. D., D. O. F. Skibinsky & M. Woodwark, 1992. Protein heterozygosity, protein structure, and taxonomic differentiation. Evolutionary Biology 26: 73–157.Google Scholar
  43. Ward, R. D., M. Woodward & D. O. F. Skibinsky, 1994. A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. Journal of Fish Biology 44: 213–232.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Paolo Maria Bisol
    • 1
  • Alessandra Gallini
    • 1
  • Sabrina Prevedello
    • 1
  • Enza Rianna
    • 1
  • Ezio Bernardinelli
    • 1
  • Anita Franco
    • 2
  • Lorenzo Zane
    • 1
  1. 1.Department of BiologyUniversity of PaduaPadovaItaly
  2. 2.Department of Environmental SciencesUniversity of VeniceVeneziaItaly

Personalised recommendations