Advertisement

Three-dimensional Culture of Human Embryonic Stem Cells

  • Sharon Gerecht
  • Jason A. Burdick
  • Christopher Cannizzaro
  • Gordana Vunjak-Novakovic
Part of the Human Cell Culture book series (HUCC, volume 6)

Keywords

Hyaluronic Acid Human Embryonic Stem Cell Feeder Layer Invitrogen Corporation hESC Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbot, A. (2003) Biology's new dimension. Nature, 424: 870–872.CrossRefGoogle Scholar
  2. Amit, M., Carpenter, M.K., Inokuma, M.S., Chiu, C.P., Harris, C.P., Waknitz, M.A., Itskovitz-Eldor, J., and Thomson, J.A. (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol., 227: 271–278.PubMedCrossRefGoogle Scholar
  3. Amit, M., Shariki, C., Margulets, V., and Itskovitz-Eldor, J. (2004) Feeder layer- and serum-free culture of human embryonic stem cells. Biol. Reprod., 70: 837–845.PubMedCrossRefGoogle Scholar
  4. Anderson, D.G., Burdick, J.A., and Langer, R. (2004) Materials science. Smart biomaterials. Science, 305: 1923–1924.Google Scholar
  5. Brimble, S.N., Zeng, X., Weiler, D.A., Luo, Y., Liu, Y., Lyons, I.G., Freed, W.J., Robins, A.J., Rao, M.S., and Schulz, T.C. (2004) Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev., 13: 585–597.PubMedCrossRefGoogle Scholar
  6. Burdick, J.A., Chung, C., Jia, X., Randolph, M.A., and Langer, R. (2005) Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules, 6: 386–391.PubMedCrossRefGoogle Scholar
  7. Burdick, J.A., Khademhosseini, A., and Langer, R. (2004) Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir, 20: 5153–5156.PubMedCrossRefGoogle Scholar
  8. Buzzard, J.J., Gough, N.M., Crook, J.M., and Coleman, A. (2004) Karyotype of human ES cells during extended culture. Nat. Biotechnol., 22: 381–382.PubMedCrossRefGoogle Scholar
  9. Carpenter, M.K., Chunhui, Xu., Daight, C.A., Antosiewiczm J.E., and Thomsonm J.A. (2003) Protocols for the maintenance of human embryonic stem cells. In: Human Embryonic Stem Cells, Chiu, A. and Rao, M.S. (eds.), Humana Press Totowa, NJ.Google Scholar
  10. Dar, A., Shachar, M., Leor, J., and Cohen, S. (2002) Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol. Bioeng., 80: 305–312.PubMedCrossRefGoogle Scholar
  11. Draper, J.S., Smith, K., Gokhale, P., Moore, H.D., Maltby, E., Johnson, J., Meisner, L., Zwaka, T.P., Thomson, J.A., and Andrews, P.W. (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol., 22: 53–54.PubMedCrossRefGoogle Scholar
  12. Evanko, S.P. and Wight, T.N. (1999) Intracellular localization of hyaluronan in proliferating cells. J. Histochem. Cytochem., 47: 1331–1342.PubMedGoogle Scholar
  13. Ferreira, L., Gil, M.H., and Dordick, J.S. (2002) Enzymatic synthesis of dextran-containing hydrogels. Biomaterials, 23: 3957–3967.PubMedCrossRefGoogle Scholar
  14. Gerecht-Nir, S., Cohen, S., and Itskovitz-Eldor, J. (2004a) Three-dimensional porous alginate scaffolds provide a conducive environment for generation of well-vascularized embryoid bodies from human embryonic stem cells. Biotechnol. Bioeng., 86: 493–502.PubMedCrossRefGoogle Scholar
  15. Gerecht-Nir, S., Cohen, S., Ziskind, A., and Itskovitz-Eldor, J. (2004b) Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol. Bioeng., 88: 313–320.PubMedCrossRefGoogle Scholar
  16. Gerecht-Nir, S., Radisic, M., Park, H., Boublik, J., Cannizzaro, C., Langer, R., and Vunjak-Novakovic, G. (2006) Biophysical regulation of cardiogenesis. Int. J. Dev. Biol., 50: 233–243.PubMedCrossRefGoogle Scholar
  17. Gerecht-Nir, S., Burdick, J.A., Ferreira, L.S., Townsend, S.A., Langer, R., and Vunjak-Novakovic, G. Propagation of undifferentiated human embryonic stem cells in hyaluronic acid hydrogels. PNAS (in review).Google Scholar
  18. Glicklis, R., Shapiro, L., Aqbaria, R., Merchuk, J.C., and Cohen, S. (2000) Hepatocyte behavior within three-dimensional porous alginate scaffolds. Biotechnol. Bioeng., 67: 344–353.PubMedCrossRefGoogle Scholar
  19. Hoffman, L.M. and Carpenter, M.K. (2005) Characterization and culture of human embryonic stem cells. Nat. Biotechnol., 23: 699–708.PubMedCrossRefGoogle Scholar
  20. Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., Soreq, H., and Benvenisty, N. (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med., 6: 88–95.PubMedGoogle Scholar
  21. Jacks, T. and Weinberg, R.A. (2002) Taking the study of cancer cell survival to a new dimension. Cell, 111: 923–925.PubMedCrossRefGoogle Scholar
  22. Khademhosseini, A., Eng, G., Yeh, J., Fukuda, J., Blumling, J. 3rd., Langer, R., and Burdick, J.A. (2006) Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment. Biomed. Mater. Res. A., Jun 20; [Epub ahead of print].Google Scholar
  23. Leor, J., Aboulafia-Etzion, S., Dar, A., Shapiro, L., Barbash, I., Battler, A., Granot, Y., and Cohen, S. (2000) Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium. Circulation, 102: 56–61.Google Scholar
  24. Levenberg, S., Golub, J.S., Amit, M., Itskovitz-Eldor, J., and Langer, R. (2002) Endothelial cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. U.S.A, 99: 4391–4396.PubMedCrossRefGoogle Scholar
  25. Levenberg, S., Huang, N.F., Lavik, E., Rogers, A.B., Itskovitz-Eldor, J., and Langer, R. (2003) Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc. Natl. Acad. Sci. U.S.A, 100: 12741–12746.PubMedCrossRefGoogle Scholar
  26. Levenberg, S., Burdick, J.A., Kraehenbuehl T., and Langer R. (2005) Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds. Tissue Eng., 11: 506–512.PubMedCrossRefGoogle Scholar
  27. Lutolf, M.P. and Hubbell, J.A. (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol., 23: 47–55.PubMedCrossRefGoogle Scholar
  28. Mitalipova, M.M., Rao, R.R., Hoyer, D.M., Johnson, J.A., Meisner, L.F., Jones, K.L., Dalton, S., and Stice, S.L. (2005) Preserving the genetic integrity of human embryonic stem cells. Nat. Biotechnol., 23: 9–20.CrossRefGoogle Scholar
  29. Postovit, L.M., Seftor, E.A., Seftor, R.E., and Hendrix, M.J. (2006) A three-dimensional model to study the epigenetic effects induced by the microenvironment of human embryonic stem cells. Stem Cells 24: 501–505.PubMedCrossRefGoogle Scholar
  30. Proetzel, G. and Wiles, M.V. (2002) The use of a chemically defined media for the analyses of early development in ES cells and mouse embryos. Methods Mol. Biol., 185: 17–26.PubMedGoogle Scholar
  31. Radisic, M., Malda, J., Epping, E., Geng, W., Langer, R., and Vunjak-Novakovic, G. (2006) Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol. Bioeng., 93: 332–343.PubMedCrossRefGoogle Scholar
  32. Radisic, M., Park, H., Gerecht-Nir, S., Cannizzaro, C., Langer, R., and Vunjak-Novakovic, G. Biomimetic approach to cardiac tissue engineering. Philosophical Transactions of the Royal Society of London (in press).PubMedCrossRefGoogle Scholar
  33. Richards, M., Fong, C.Y., Chan, W.K., Wong, P.C., and Bongso, A. (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol., 20: 933–936.PubMedCrossRefGoogle Scholar
  34. Rosler, E.S., Fisk, G.J., Ares, X., Irving, J., Miura, T., Rao, M.S., and Carpenter, M.K. (2004) Long-term culture of human embryonic stem cells in feeder-free conditions. Dev. Dyn., 229: 259–274.PubMedCrossRefGoogle Scholar
  35. Schatten, G., Smith, J., Navara, C., Park, J.H., and Pedersen, R. (2005) Culture of human embryonic stem cells. Nat. Methods, 2: 455–463.PubMedCrossRefGoogle Scholar
  36. Shapiro, L. and Cohen, S. (1997) Novel alginate sponges for cell culture and transplantation. Biomaterials, 18: 583–590.PubMedCrossRefGoogle Scholar
  37. Stojkovic, P., Lako, M., Przyborski, S., Stewart, R., Armstrong, L., Evans, J., Zhang, X., and Stojkovic M. (2005) Human-serum matrix supports undifferentiated growth of human embryonic stem cells. Stem Cells, 23: 895–902.PubMedCrossRefGoogle Scholar
  38. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998) Embryonic stem cell lines derived from human blastocysts. Science, 282: 1145–1147.PubMedCrossRefGoogle Scholar
  39. Toole, B.P. (2001) Hyaluronan in morphogenesis. Semin. Cell Dev. Biol., 12: 79–87.PubMedCrossRefGoogle Scholar
  40. Wang, L., Li, L., Menendez, P., Cerdan, C., and Bhatia, M. (2005) Human embryonic stem cells maintained in the absence of mouse embryonic fibroblasts or conditioned media are capable of hematopoietic development. Blood, 105: 4598–4603.PubMedCrossRefGoogle Scholar
  41. Xu, C., Inokuma, M.S., Denham, J., Golds, K., Kundu, P., Gold, J.D., and Carpenter, M.K. (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol., 19: 971–974.PubMedCrossRefGoogle Scholar
  42. Xu, C., Rosler, E., Jiang, J., Lebkowski, J.S., Gold, J.D., O'Sullivan, C., Delavan-Boorsma, K., Mok, M., Bronstein, A., and Carpenter, M.K. (2005) Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells, 23: 315–323.PubMedCrossRefGoogle Scholar
  43. Xu, R.H., Peck, R.M., Li, D.S., Feng, X., Ludwig, T., and Thomson, J.A. (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat. Methods, 2: 185–190.PubMedCrossRefGoogle Scholar
  44. Zmora, S., Glicklis, R., and Cohen, S. (2002) Tailoring the pore architecture in 3-D alginate scaffolds by controlling the freezing regime during fabrication. Biomaterials, 23: 4087–4094.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Sharon Gerecht
    • 1
  • Jason A. Burdick
    • 2
  • Christopher Cannizzaro
    • 3
  • Gordana Vunjak-Novakovic
    • 4
  1. 1.Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridge
  2. 2.Department of BioengineeringUniversity of PennsylvaniaPhiladelphia
  3. 3.Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridge
  4. 4.Department of Biomedical EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations