Human Embryonal Carcinoma (EC) Cells: Complementary Tools for Embryonic Stem Cell Research

  • Peter D. Tonge
  • Peter W. Andrews
Part of the Human Cell Culture book series (HUCC, volume 6)


Embryonic Stem Cell Retinoic Acid Human Embryonic Stem Cell Neural Differentiation Embryonal Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman, S.L., Knowles, B.B., et al. (1994) Gene regulation during neuronal and non-neuronal differentiation of NTERA2 human teratocarcinoma-derived stem cells. Brain Res. Mol. Brain Res., 25(1–2): 157–162.PubMedGoogle Scholar
  2. Andrews, P.W. (1982) Human embryonal carcinoma cells in culture do not synthesize fibronectin until they differentiate. Int. J. Cancer, 30(5): 567–571.PubMedGoogle Scholar
  3. Andrews, P.W. (1984) Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev. Biol., 103(2): 285–293.PubMedGoogle Scholar
  4. Andrews, P.W. (2002) From teratocarcinomas to embryonic stem cells. Philos. Trans. R. Soc. Lond. B, Biol. Sci., 357: 405–417.Google Scholar
  5. Andrews, P.W., Bronson, D.L., et al. (1980) A comparative study of eight cell lines derived from human testicular teratocarcinoma. Int. J. Cancer, 26(3): 269–280.PubMedGoogle Scholar
  6. Andrews, P.W., Casper, J., et al. (1996) Comparative analysis of cell surface antigens expressed by cell lines derived from human germ cell tumours. Int. J. Cancer, 66(6): 806–816.PubMedGoogle Scholar
  7. Andrews, P.W. and Damjanov, I. (1994) Cells from human germ-cell tumours. In: Atlas of Human Tumor Cell Lines (Eds.: Hay, R.J., Park, J.G., and Gazdar, A.), Academic Press, London, pp. 443–476.Google Scholar
  8. Andrews, P.W., Damjanov, I., et al. (1994) Inhibition of proliferation and induction of differentiation of pluripotent human embryonal carcinoma cells by osteogenic protein-1 (or bone morphogenetic protein-7). Lab Invest., 71(2): 243–251.PubMedGoogle Scholar
  9. Andrews, P.W., Damjanov, I., et al. (1984) Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab Invest., 50(2): 147–162.Google Scholar
  10. Andrews, P.W., Gonczol, E., et al. (1986) Differentiation of TERA-2 human embryonal carcinoma cells into neurons and HCMV permissive cells. Induction by agents other than retinoic acid. Differentiation, 31(2): 119–126.Google Scholar
  11. Andrews, P.W., Goodfellow, P.N., et al. (1982) Cell-surface antigens of a clonal human embryonal carcinoma cell line: morphological and antigenic differentiation in culture. Int. J. Cancer, 29(5): 523–531.PubMedGoogle Scholar
  12. Andrews, P.W., Matin, M.M., et al. (2005) Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem. Soc. Trans., 33(Pt 6): 1526–1530.PubMedGoogle Scholar
  13. Andrews, P.W., Nudelman, E., et al. (1990) Different patterns of glycolipid antigens are expressed following differentiation of TERA-2 human embryonal carcinoma cells induced by retinoic acid, hexamethylene bisacetamide (HMBA) or bromodeoxyuridine (BUdR). Differentiation, 43(2): 131–138.PubMedGoogle Scholar
  14. Bahrami, A.R., Matin, M.M., et al. (2005) The CDK inhibitor p27 enhances neural differentiation in pluripotent NTERA2 human EC cells, but does not permit differentiation of 2102Ep nullipotent human EC cells. Mech. Dev., 122(9): 1034–1042.PubMedGoogle Scholar
  15. Bani-Yaghoub, M., Bechberger, J.F., et al. (1997) Reduction of connexin43 expression and dye-coupling during neuronal differentiation of human NTera2/clone D1 cells. J. Neurosci. Res., 49(1): 19–31.PubMedGoogle Scholar
  16. Bani-Yaghoub, M., Bechberger, J.F., et al. (1999) The effects of gap junction blockage on neuronal differentiation of human NTera2/clone D1 cells. Exp. Neurol., 156(1): 16–32.PubMedGoogle Scholar
  17. Bani-Yaghoub, M., Felker, J.M., et al. (1999) Human NT2/D1 cells differentiate into functional astrocytes. Neuroreport, 10(18): 3843–3846.PubMedGoogle Scholar
  18. Begemann, G., Schilling, T.F., et al. (2001) The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain. Development, 128(16): 3081–3094.PubMedGoogle Scholar
  19. Bittman, K., Owens, D.F., et al. (1997) Cell coupling and uncoupling in the ventricular zone of developing neocortex. J. Neurosci., 17(18): 7037–7044.PubMedGoogle Scholar
  20. Bottero, L., Simeone, A., et al. (1991) Differential activation of homeobox genes by retinoic acid in human embryonal carcinoma cells. Recent Results Cancer Res., 123: 133–143.PubMedGoogle Scholar
  21. Brinster, R.L. (1974) The effect of cells transferred into the mouse blastocyst on subsequent development. J. Exp. Med., 140(4): 1049–1056.PubMedGoogle Scholar
  22. Carpenter, M.K., Cui, X., et al. (1999) In vitro expansion of a multipotent population of human neural progenitor cells. Exp. Neurol., 158(2): 265–278.PubMedGoogle Scholar
  23. Chaganti, R.S., Rodriguez, E., et al. (1993) Cytogenetics of male germ-cell tumors. Urol. Clin. North Am., 20(1): 55–66.PubMedGoogle Scholar
  24. Ciani, L. and Salinas, P.C. (2005) WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat. Rev. Neurosci., 6(5): 351–362.PubMedGoogle Scholar
  25. Damjanov, I. (1993a) Pathogenesis of testicular germ cell tumours. Eur. Urol., 23(1): 2–5; discussion 6–7.PubMedGoogle Scholar
  26. Damjanov, I. (1993b) Teratocarcinoma: neoplastic lessons about normal embryogenesis. Int. J. Dev. Biol., 37(1): 39–46.PubMedGoogle Scholar
  27. Damjanov, I. and Andrews, P.W. (1983) Ultrastructural differentiation of a clonal human embryonal carcinoma cell line in vitro. Cancer Res., 43(5): 2190–2198.PubMedGoogle Scholar
  28. Damjanov, I. and Solter, D. (1974) Experimental teratoma. Curr. Top. Pathol., 59: 69–130.PubMedGoogle Scholar
  29. Draper, J.S., Pigott, C., et al. (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J. Anat., 200(Pt 3): 249–258.PubMedGoogle Scholar
  30. Draper, J.S., Smith, K., et al. (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol., 22(1): 53–54.PubMedGoogle Scholar
  31. Dupe, V., Davenne, M., et al. (1997) In vivo functional analysis of the Hoxa-1 3¢ retinoic acid response element (3¢RARE). Development, 124(2): 399–410.PubMedGoogle Scholar
  32. Duran, C., Talley, P.J., et al. (2001) Hybrids of pluripotent and nullipotent human embryonal carcinoma cells: partial retention of a pluripotent phenotype. Int. J. Cancer, 93(3): 324–332.PubMedGoogle Scholar
  33. Evans, M.J. and Kaufman, M.H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature, 292: 154–156.PubMedGoogle Scholar
  34. Fenderson, B.A., Andrews, P.W., et al. (1987) Glycolipid core structure switching from globo- to lacto- and ganglio-series during retinoic acid-induced differentiation of TERA-2-derived human embryonal carcinoma cells. Dev. Biol., 122(1): 21–34.PubMedGoogle Scholar
  35. Ferrari, A., Ehler, E., et al. (2000) Immature human NT2 cells grafted into mouse brain differentiate into neuronal and glial cell types. FEBS Lett., 486(2): 121–125.PubMedGoogle Scholar
  36. Finch, B.W. and Ephrussi, B. (1967) Retention of multiple developmental potentialities by cells of a mouse testicular teratocarcinoma during prolonged culture in vitro and their extinction upon hybridization with cells of permanent lines. Proc. Natl. Acad. Sci. USA, 57(3): 615–621.PubMedGoogle Scholar
  37. Fogh, J. and Trempe, G. (1975) New human tumor cell lines. In: Human Tumor Cells In Vitro (Eds. Fogh, J.). Plenum Press, NY, pp. 115–159.Google Scholar
  38. Guillemain, I., Alonso, G., et al. (2000) Human NT2 neurons express a large variety of neurotransmission phenotypes in vitro. J. Comp. Neurol., 422(3): 380–395.PubMedGoogle Scholar
  39. Hartley, R.S., Margulis, M., et al. (1999) Functional synapses are formed between human NTera2 (NT2N, hNT) neurons grown on astrocytes. J. Comp. Neurol., 407(1): 1–10.PubMedGoogle Scholar
  40. Hata, J., Fujita, H., et al. (1989) [Differentiation of human germ cell tumor cells]. Hum. Cell, 2(4): 382–387.PubMedGoogle Scholar
  41. Hay, D.C., Sutherland, L., et al. (2004) Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells, 22(2): 225–235.PubMedGoogle Scholar
  42. Hemmati-Brivanlou, A. and Melton, D. (1997) Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell, 88(1): 13–17.PubMedGoogle Scholar
  43. Henderson, J.K., Draper, J.S., et al. (2002) Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells, 20(4): 329–337.PubMedGoogle Scholar
  44. Hogan, B., Fellous, M., et al. (1977) Isolation of a human teratoma cell line which expresses F9 antigen. Nature, 270(5637): 515–518.PubMedGoogle Scholar
  45. Holden, S., Bernard, O., et al. (1977) Human and mouse embryonal carcinoma cells in culture share an embryonic antigen (F9). Nature, 270(5637): 518–520.PubMedGoogle Scholar
  46. Hovatta, O., Mikkola, M., et al. (2003) A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum. Reprod., 18(7): 1404–1409.PubMedGoogle Scholar
  47. Iacovitti, L., Stull, N.D., et al. (2001) Differentiation of human dopamine neurons from an embryonic carcinomal stem cell line. Brain Res., 912(1): 99–104.PubMedGoogle Scholar
  48. Irioka, T., Watanabe, K., et al. (2005) Distinct effects of caudalizing factors on regional specification of embryonic stem cell-derived neural precursors. Brain Res. Dev. Brain Res., 154(1): 63–70.PubMedGoogle Scholar
  49. Jacob, F. (1978) The Leeuwenhoek lecture, 1977. Mouse teratocarcinoma and mouse embryo. Proc. R. Soc. Lond. B. Biol. Sci., 201(1144): 249–270.PubMedGoogle Scholar
  50. Jakob, H., Boon, T., et al. (1973) [Teratocarcinoma of the mouse: isolation, culture and properties of pluripotential cells]. Ann. Microbiol. (Paris), 124(3): 269–282.Google Scholar
  51. Jacobson, M. (1991) Developmantal Neurobiology. Plenum press, New York.Google Scholar
  52. Kahan, B.W. and Ephrussi, B. (1970) Developmental potentialities of clonal in vitro cultures of mouse testicular teratoma. J. Natl. Cancer Inst., 44(5): 1015–1036.PubMedGoogle Scholar
  53. Kanda, Y., Katsura, K., et al. (2005) Milk growth factor (MGF)-induced differentiation of NT2/D1 cells. Neurosci. Lett., 384(3): 260–264.PubMedGoogle Scholar
  54. Kannagi, R., Cochran, N.A., et al. (1983) Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J., 2(12): 2355–2361.PubMedGoogle Scholar
  55. Kawasaki, H., Mizuseki, K., et al. (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron, 28(1): 31–40.PubMedGoogle Scholar
  56. Kleinsmith, L.J. and Pierce, G.B., Jr. (1964) Multipotentiality of single embryonal carcinoma cells. Cancer Res., 24: 1544–1551.PubMedGoogle Scholar
  57. Knowles, B.B., Aden, D.P., et al. (1978) Monoclonal antibody detecting a stage-specific embryonic antigen (SSEA-1) on preimplantation mouse embryos and teratocarcinoma cells. Curr. Top. Microbiol. Immunol., 81: 51–53.PubMedGoogle Scholar
  58. Kraggerud, S.M., Skotheim, R.I., et al. (2002) Genome profiles of familial/bilateral and sporadic testicular germ cell tumors. Genes Chromosomes Cancer, 34(2): 168–174.PubMedGoogle Scholar
  59. Lee, V.M., Hartley, R.S., et al. (2000) Neurobiology of human neurons (NT2N) grafted into mouse spinal cord: implications for improving therapy of spinal cord injury. Prog. Brain Res., 128: 299–307.PubMedGoogle Scholar
  60. Leypoldt, F., Lewerenz, J., et al. (2001) Identification of genes up-regulated by retinoic-acid-induced differentiation of the human neuronal precursor cell line NTERA-2 cl.D1. J. Neurochem., 76(3): 806–814.PubMedGoogle Scholar
  61. Longo, L., Bygrave, A., et al. (1997) The chromosome make-up of mouse embryonic stem cells is predictive of somatic and germ cell chimaerism. Transgenic Res., 6(5): 321–328.PubMedGoogle Scholar
  62. Marchal-Victorion, S., Deleyrolle, L., et al. (2003) The human NTERA2 neural cell line generates neurons on growth under neural stem cell conditions and exhibits characteristics of radial glial cells. Mol. Cell Neurosci., 24(1): 198–213.PubMedGoogle Scholar
  63. Martin, G.R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA, 78: 7634–7636.PubMedGoogle Scholar
  64. Martin, G.R. and Evans, M.J. (1974) The morphology and growth of a pluripotent teratocarcinoma cell line and its derivatives in tissue culture. Cell, 2(3): 163–172.PubMedGoogle Scholar
  65. Martin, G.R. and Evans, M.J. (1975) Differentiation of clonal lines of teratocarcinomas cells: formation of embryoid bodies in vitro. Proc. Natl. Acad. Sci. USA, 72: 1441–1445.PubMedGoogle Scholar
  66. Matin, M.M., Walsh, J.R., et al. (2004) Specific knockdown of Oct4 and beta2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells. Stem Cells, 22(5): 659–668.PubMedGoogle Scholar
  67. Mavilio, F., Simeone, A., et al. (1988) Activation of four homeobox gene clusters in human embryonal carcinoma cells induced to differentiate by retinoic acid. Differentiation, 37(1): 73–79.PubMedGoogle Scholar
  68. Mintz, B. and Illmensee, K. (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl. Acad. Sci. USA, 72(9): 3585–3589.PubMedGoogle Scholar
  69. Misiuta, I.E., Anderson, L., et al. (2003) The transcription factor Nurr1 in human NT2 cells and hNT neurons. Brain Res. Dev. Brain Res., 145(1): 107–115.PubMedGoogle Scholar
  70. Moasser, M.M., DeBlasio, A., et al. (1994) Response and resistance to retinoic acid are mediated through the retinoic acid nuclear receptor gamma in human teratocarcinomas. Oncogene, 9(3): 833–840.PubMedGoogle Scholar
  71. Nelson, P.T., Kondziolka, D., et al. (2002) Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am. J. Pathol., 160(4): 1201–1206.PubMedGoogle Scholar
  72. Nicolas, J.F., Dubois, P., et al. (1975) [Mouse teratocarcinoma: differentiation in cultures of a multipotential primitive cell line]. Ann. Microbiol. (Paris), 126(1): 3–22.Google Scholar
  73. Niederreither, K., Vermot, J., et al. (2000) Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development, 127(1): 75–85.PubMedGoogle Scholar
  74. Niwa, H., Miyazaki, J., et al. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet., 24(4): 372–376.PubMedGoogle Scholar
  75. Okabe, S., Forsberg-Nilsson, K., et al. (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59(1): 89–102.PubMedGoogle Scholar
  76. Papaioannou, V.E., McBurney, M.W., et al. (1975) Fate of teratocarcinoma cells injected into early mouse embryos. Nature, 258(5530): 70–73.PubMedGoogle Scholar
  77. Park, C.H., Minn, Y.K., et al. (2005) In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J. Neurochem., 92(5): 1265–1276.PubMedGoogle Scholar
  78. Pera, M.F., Cooper, S., et al. (1989) Isolation and characterization of a multipotent clone of human embryonal carcinoma cells. Differentiation, 42(1): 10–23.PubMedGoogle Scholar
  79. Pevny, L.H., Sockanathan, S., et al. (1998) A role for SOX1 in neural determination. Development, 125(10): 1967–1978.PubMedGoogle Scholar
  80. Pierce, G.B. (1975) Teratocarcinomas: introduction and perspectives. In: Teratomas and Differentiation (Ed.: Sherman, M.I. and Solter, D.) Academic Press, New York, pp. 3–12.Google Scholar
  81. Pleasure, S.J. and Lee, V. M. (1993) NTera 2 cells: a human cell line which displays characteristics expected of a human committed neuronal progenitor cell. J. Neurosci. Res., 35(6): 585–602.PubMedGoogle Scholar
  82. Pleasure, S.J., Page, C., et al. (1992) Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J. Neurosci., 12(5): 1802–1815.PubMedGoogle Scholar
  83. Przyborski, S.A., Morton, I.E., et al. (2000) Developmental regulation of neurogenesis in the pluripotent human embryonal carcinoma cell line NTERA-2. Eur. J. Neurosci., 12(10): 3521–3528.PubMedGoogle Scholar
  84. Przyborski, S.A., Smith, S., et al. (2003) Transcriptional profiling of neuronal differentiation by human embryonal carcinoma stem cells in vitro. Stem Cells, 21(4): 459–471.PubMedGoogle Scholar
  85. Qualtrough, J.D. (1998) Bone Morphogenetic Proteins in Human Embryonal Carcinoma Cells. Thesis. Sheffield University Library.Google Scholar
  86. Reubinoff, B.E., Itsykson, P., et al. (2001) Neural progenitors from human embryonic stem cells. Nat. Biotechnol., 19(12): 1134–1140.PubMedGoogle Scholar
  87. Reubinoff, B.E., Pera, M.F., et al. (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol., 18(4): 399–404.PubMedGoogle Scholar
  88. Rosenberg, C., Schut, T.B., et al. (1999) Chromosomal gains and losses in testicular germ cell tumors of adolescents and adults investigated by a modified comparative genomic hybridization approach. Lab. Invest., 79(12): 1447–1451.PubMedGoogle Scholar
  89. Saporta, S., Willing, A.E., et al. (2004) Rapid differentiation of NT2 cells in Sertoli-NT2 cell tissue constructs grown in the rotating wall bioreactor. Brain Res. Bull., 64(4): 347–356.Google Scholar
  90. Schulz, T.C., Noggle, S.A., et al. (2004) Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem Cells, 22(7): 1218–1238.PubMedGoogle Scholar
  91. Schwartz, C.M., Spivak, C.E., et al. (2005) NTera2: a model system to study dopaminergic differentiation of human embryonic stem cells. Stem Cells Dev., 14(5): 517–534.PubMedGoogle Scholar
  92. Shevinsky, L.H., Knowles, B.B., et al. (1982) Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. Cell, 30(3): 697–705.PubMedGoogle Scholar
  93. Skakkebaek, N.E. (1972) Possible carcinoma-in-situ of the testis. Lancet, 2(7776): 516–517.PubMedGoogle Scholar
  94. Skakkebaek, N.E., Berthelsen, J.G., et al. (1987) Carcinoma-in-situ of the testis: possible origin from gonocytes and precursor of all types of germ cell tumours except spermatocytoma. Int. J. Androl., 10(1): 19–28.PubMedGoogle Scholar
  95. Skotheim, R.I., Monni, O., et al. (2002) New insights into testicular germ cell tumorigenesis from gene expression profiling. Cancer Res., 62(8): 2359–2364.PubMedGoogle Scholar
  96. Slack, J.M. and Tannahill, D. (1992) Mechanism of anteroposterior axis specification in vertebrates. Lessons from the amphibians. Development, 114(2): 285–302.Google Scholar
  97. Sodja, C., Fang, H., et al. (2002) Identification of functional dopamine receptors in human teratocarcinoma NT2 cells. Brain Res. Mol. Brain Res., 99(2): 83–91.PubMedGoogle Scholar
  98. Solter, D. and Knowles, B.B. (1978) Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl. Acad. Sci. USA, 75(11): 5565–5569.PubMedGoogle Scholar
  99. Sperger, J.M., Chen, X., et al. (2003) Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc. Natl. Acad. Sci. USA, 100(23): 13350–13355.PubMedGoogle Scholar
  100. Stevanovic, M. (2003) Modulation of SOX2 and SOX3 gene expression during differentiation of human neuronal precursor cell line NTERA2. Mol. Biol. Rep., 30(2): 127–132.PubMedGoogle Scholar
  101. Stevens, L.C. (1967) Origin of testicular teratomas from primordial germ cells in mice. J. Natl. Cancer Inst., 38(4): 549–552.PubMedGoogle Scholar
  102. Stevens, L.C. and Little, C.C. (1954) Spontaneous testicular teratomas in an inbred strain of mice. Proc. Natl. Acad. Sci. USA, 40(11): 1080–1087.PubMedGoogle Scholar
  103. Strickland, S. and Mahdavi, V. (1978) The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell, 15(2): 393–403.PubMedGoogle Scholar
  104. Studer, M., Popperl, H., et al. (1994) Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science, 265(5179): 1728–1732.PubMedGoogle Scholar
  105. Tang, K., Yang, J., et al. (2002) Wnt-1 promotes neuronal differentiation and inhibits gliogenesis in P19 cells. Biochem. Biophys. Res. Commun., 293(1): 167–173.PubMedGoogle Scholar
  106. Teshima, S., Shimosato, Y., et al. (1988) Four new human germ cell tumor cell lines. Lab. Invest., 59(3): 328–336.PubMedGoogle Scholar
  107. Thompson, S., Stern, P.L., et al. (1984) Cloned human teratoma cells differentiate into neuron-like cells and other cell types in retinoic acid. J. Cell Sci., 72: 37–64.PubMedGoogle Scholar
  108. Thomson, J.A., Itskovitz-Eldor, J., et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science, 282(5391): 1145–1147.PubMedGoogle Scholar
  109. Tropepe, V., Hitoshi, S., et al. (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron, 30(1): 65–78.PubMedGoogle Scholar
  110. Wakeman, J.A., Walsh, J., et al. (1998) Human Wnt-13 is developmentally regulated during the differentiation of NTERA-2 pluripotent human embryonal carcinoma cells. Oncogene, 17(2): 179–186.PubMedGoogle Scholar
  111. Walsh, J. and Andrews, P.W. (2003) Expression of Wnt and Notch pathway genes in a pluripotent human embryonal carcinoma cell line and embryonic stem cell. APMIS, 111(1): 197–210; discussion 210–211.PubMedGoogle Scholar
  112. Wheeler, J.E. (1983) History of teratomas. In: The Human Teratomas: Experimental and Clinical Biology (Ed.: Damjanov, I., Knowles, B.B., and Solter, D.), Humana Press, Clifton, NJ, pp. 1–22.Google Scholar
  113. Wichterle, H., Lieberam, I., et al. (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell, 110(3): 385–397.PubMedGoogle Scholar
  114. Wong, R.C., Pebay, A., et al. (2004) Presence of functional gap junctions in human embryonic stem cells. Stem Cells, 22(6): 883–889.PubMedGoogle Scholar
  115. Xu, R.H., Chen, X., et al. (2002) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol., 20(12): 1261–1264.PubMedGoogle Scholar
  116. Xu, R.H., Peck, R.M., et al. (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat. Methods, 2(3): 185–190.PubMedGoogle Scholar
  117. Xu, T., Gregory, C.A., et al. (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials, 27(19): 4181–4186.Google Scholar
  118. Yoon, K. and Gaiano, N. (2005) Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat. Neurosci., 8(6): 709–715.PubMedGoogle Scholar
  119. Zhang, S.C., Wernig, M., et al. (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol., 19(12): 1129–1133.PubMedGoogle Scholar
  120. Zigova, T., Barroso, L.F., et al. (2000) Dopaminergic phenotype of hNT cells in vitro. Brain Res. Dev. Brain Res., 122(1): 87–90.PubMedGoogle Scholar
  121. zur Nieden, N.I., Kempka, G., et al. (2005) Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev. Biol., 5(1): 1.PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Peter D. Tonge
    • 1
  • Peter W. Andrews
    • 2
  1. 1.The Centre for Stem Cell Biology and the Department of Biomedical ScienceUniversity of SheffieldWestern BankUK
  2. 2.The Centre for Stem Cell Biology and the Department of Biomedical ScienceUniversity of SheffieldWestern BankUK

Personalised recommendations