Skip to main content

Cardiomyocyte Differentiation

  • Chapter
Human Cell Culture

Part of the book series: Human Cell Culture ((HUCC,volume 6))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrée, B., Duprez, D., Vorbusch, B., Arnold, H.H., and Brand, T. (1998) BMP-2 induces ectopic expression of cardiac lineage markers and interferes with somite formation in chicken embryos. Mech. Dev., 70: 119–131.

    Article  PubMed  Google Scholar 

  • Azpiazu, N. and Frasch, M. (1993) Tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev., 7: 1325–1340.

    Article  PubMed  CAS  Google Scholar 

  • Barron, M., Gao, M., and Lough, J. (2000) Requirement for BMP and FGF signaling during cardiogenic induction in non-precardiac mesoderm is specific, transient, and cooperative. Dev. Dyn., 218: 383–393.

    Article  PubMed  CAS  Google Scholar 

  • Behfar, A., Zingman, L.V., Hodgson, D.M., Rauzier, J.M., Kane, G.C., Terzic, A., and Puceat, M. (2002) Stem cell differentiation requires a paracrine pathway in the heart. FASEB J., 16: 1558–1566.

    Article  PubMed  Google Scholar 

  • Bers, D.M. (2002) Cardiac excitation-contraction coupling. Nature, 415: 198–205.

    Article  PubMed  CAS  Google Scholar 

  • Bodmer, R. (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development, 118: 719–729.

    PubMed  CAS  Google Scholar 

  • Boheler, K.R., Czyz, J., Tweedie, D., Yang, H.T., Anisimov, S.V., and Wobus, A.M. (2002) Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ. Res., 91: 189–201.

    Article  PubMed  CAS  Google Scholar 

  • Bruneau, B.G. (2002) Transcriptional regulation of vertebrate cardiac morphogenesis. Circ. Res., 90: 509–519.

    Article  PubMed  Google Scholar 

  • Doetschman, T.C., Eistetter, H., Katz, M., Schmidt, W., and Kemler, R. (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol., 87: 27–45.

    PubMed  CAS  Google Scholar 

  • Dolnikov, K., Shilkrut, M., Zeevi-Levin, N., Gerecht-Nir, S., Amit, M., Danon, A., Itskovitz-Eldor, J., and Binah, O. (2006) Functional properties of human embryonic stem cell-derived cardiomyocytes: intracellular Ca2+ handling and the role of sarcoplasmic reticulum in the contraction. Stem Cells, 24: 236–245.

    Article  PubMed  CAS  Google Scholar 

  • Evans, M.J. and Kaufman, M.H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature, 292: 154–156.

    Article  PubMed  CAS  Google Scholar 

  • He, J.Q., Ma, Y., Lee, Y., Thomson, J.A., and Kamp, T.J. (2003) Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ. Res., 93: 32–39.

    Article  PubMed  CAS  Google Scholar 

  • Hidaka, K., Lee, J.K., Kim, H.S., Ihm, C.H., Iio, A., Ogawa, M., Nishikawa, S., Kodama, I., and Morisaki, T. (2003) Chamber-specific differentiation of Nkx2.5-positive cardiac precursor cells from murine embryonic stem cells. FASEB J., 17: 740–742.

    PubMed  CAS  Google Scholar 

  • Kehat, I., Gepstein, A., Spira, A., Itskovitz-Eldor, J., and Gepstein, L. (2002) High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction. Circ. Res., 91: 659–661.

    Article  PubMed  CAS  Google Scholar 

  • Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., Livne, E., Binah, O., Itskovitz-Eldor, J., and Gepstein, L. (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest., 108: 407–414.

    PubMed  CAS  Google Scholar 

  • Klug, M.G., Soonpas, M.H., Koh, G.Y., and Field, L.J. (1996) Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J. Clin. Invest., 98: 216–224.

    Article  PubMed  CAS  Google Scholar 

  • Kolossov, E., Fleischmann, B.K., Liu, Q., Bloch, W., Viatchenko-Karpinski, S., Manzke, O., Ji, G.J., Bohlen, H., Addicks, K., and Hescheler, J. (1998) Functional characteristics of ES cell-derived cardiac precursor cells identified by tissue-specific expression of the green fluorescent protein. J. Cell Biol., 143: 2045–2056.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G.R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA, 78: 7634–7638.

    Article  PubMed  CAS  Google Scholar 

  • Marvin, M.J., Di Rocco, G., Gardiner, A., Bush, S.M., and Lassar, A.B. (2001) Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev., 15: 316–327.

    Article  PubMed  CAS  Google Scholar 

  • Metzger, J.M., Lin, W.I., and Samuelson, L.C. (1996) Vital staining of cardiac myocytes during embryonic stem cell cardiogenesis in vitro. Circ. Res., 78: 547–552.

    PubMed  CAS  Google Scholar 

  • Meyer, N., Jaconi, M., Landopoulou, A., Fort, P., and Puceat, M. (2000) A fluorescent reporter gene as a marker for ventricular specification in ES-derived cardiac cells. FEBS Lett., 478: 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Muller, M., Fleischmann, B.K., Selbert, S., Ji, G.J., Endl, E., Middeler, G., Muller, O.J., Schlenke, P., Frese, S., Wobus, A.M., Hescheler, J., Katus, H.A., and Franz, W.M. (2000) Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J., 14: 2540–2548.

    Article  PubMed  CAS  Google Scholar 

  • Mummery, C., Ward-van Oostwaard, D., Doevendans, P., Spijker, R., van den, B.S., Hassink, R., van der, H.M., Opthof, T., Pera, M., de la Riviere, A.B., Passier, R., and Tertoolen, L. (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation, 107: 2733–2740.

    Article  PubMed  CAS  Google Scholar 

  • Olson, E.N. and Srivastava, D. (1996) Molecular pathways controlling heart development. Science, 272: 671–676.

    Article  PubMed  CAS  Google Scholar 

  • Passier, R., Oostwaard, D.W., Snapper, J., Kloots, J., Hassink, R.J., Kuijk, E., Roelen, B., de la Riviere, A.B., and Mummery, C. (2005) Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells, 23: 772–780.

    Article  PubMed  CAS  Google Scholar 

  • Pegg, W. and Michalak, M. (1987) Differentiation of sarcoplasmic reticulum during cardiac myogenesis. Am. J. Physiol., 252: H22–H31.

    PubMed  CAS  Google Scholar 

  • Rudy-Reil, D. and Lough, J. (2004) Avian precardiac endoderm/mesoderm induces cardiac myocyte differentiation in murine embryonic stem cells. Circ. Res., 94: e107–e116.

    Article  PubMed  Google Scholar 

  • Satin, J., Kehat, I., Caspi, O., Huber, I., Arbel, G., Itzhaki, I., Magyar, J., Schroder, E.A., Perlman, I., and Gepstein, L. (2004) Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes. J. Physiol., 559: 479–496.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, V.A. and Mercola, M. (2001) Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev., 15: 304–315.

    Article  PubMed  CAS  Google Scholar 

  • Schram, G., Pourrier, M., Melnyk, P., and Nattel, S. (2002) Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ. Res., 90: 939–950.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder, M., Niebruegge, S., Werner, A., Willbold, E., Burg, M., Ruediger, M., Field, L.J., Lehmann, J., and Zweigerdt, R. (2005) Differentiation and lineage selection of mouse embryonic stem cells in a stirred bench scale bioreactor with automated process control. Biotechnol. Bioeng., 92: 920–933.

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss, T.M., Burch, J.B., and Lassar, A.B. (1997) A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev., 11: 451–462.

    Article  PubMed  CAS  Google Scholar 

  • Segev, H., Kenyagin-Karsenti, D., Fishman, B., Gerecht-Nir, S., Ziskind, A., Amit, M., Coleman, R., and Itskovitz-Eldor, J. (2005) Molecular analysis of cardiomyocytes derived from human embryonic stem cells. Dev. Growth Differ., 47: 295–306.

    Article  PubMed  CAS  Google Scholar 

  • Snir, M., Kehat, I., Gepstein, A., Coleman, R., Itskovitz-Eldor, J., Livne, E., and Gepstein, L. (2003) Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. Heart. Circ. Physiol., 285: H2355–H2363.

    PubMed  CAS  Google Scholar 

  • Takahashi, T., Lord, B., Schulze, P.C., Fryer, R.M., Sarang, S.S., Gullans, S.R., and Lee, R.T. (2003) Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation, 107: 1912–1916.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998) Embryonic stem cell lines derived from human blastocysts. Science, 282: 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  • Winnier, G., Blessing, M., Labosky, P.A., and Hogan, B.L. (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev., 9: 2105–2116.

    Article  PubMed  CAS  Google Scholar 

  • Wu, X., Ding, S., Ding, Q., Gray, N.S., and Schultz, P.G. (2004) Small molecules that induce cardiomyogenesis in embryonic stem cells. J. Am. Chem. Soc., 126: 1590–1591.

    Article  PubMed  CAS  Google Scholar 

  • Xu, C., Police, S., Rao, N., and Carpenter, M.K. (2002a) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res., 91: 501–508.

    Article  PubMed  CAS  Google Scholar 

  • Xu, R.H., Chen, X., Li, D.S., Li, R., Addicks, G.C., Glennon, C., Zwaka, T.P., and Thomson, J.A. (2002b) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol., 20: 1261–1264.

    Article  PubMed  CAS  Google Scholar 

  • Xue, T., Cho, H.C., Akar, F.G., Tsang, S.Y., Jones, S.P., Marban, E., Tomaselli, G.F., and Li, R.A. (2005) Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation, 111: 11–20.

    Article  PubMed  Google Scholar 

  • Yuasa, S., Itabashi, Y., Koshimizu, U., Tanaka, T., Sugimura, K., Kinoshita, M., Hattori, F., Fukami, S., Shimazaki, T., Ogawa, S., Okano, H., and Fukuda, K. (2005) Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat. Biotechnol., 23: 607–611.

    Article  PubMed  CAS  Google Scholar 

  • Zaffran, S. and Frasch, M. (2002) Early signals in cardiac development. Circ. Res., 91: 457–469.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H. and Bradley, A. (1996) Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development, 122: 2977–2986.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Singla, D.K., Jayaraman, S., Zhang, J., Kamp, T.J. (2007). Cardiomyocyte Differentiation. In: Masters, J.R., Palsson, B.O., Thomson, J.A. (eds) Human Cell Culture. Human Cell Culture, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5983-4_12

Download citation

Publish with us

Policies and ethics