Contact Models for Very Loose Granular Materials

  • Stefan Luding
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 1)


One challenge of todays research on particle systems is the realistic simulation of granular materials consisting of many thousands of particles with peculiar contact interactions. In this study, molecular dynamics (MD, also called discrete element method, DEM) is introduced for the simulation of many-particle systems. A wide class of realistic contact models is presented, involving dissipation, adhesion, plastic deformation, friction, rolling- and torsion resistance.

The effect of the contact properties on a simple compaction test is discussed with the goal to achieve as small as possible packing densities. With contact forces only, packing volume fractions down to 0.42 can be achieved, while somewhat longer ranged adhesion forces allow for volume fractions as low as 0.34.


Contact Force Tangential Force Discrete Element Model Tangential Spring Torsion Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. A. Vermeer, S. Diebels, W. Ehlers, H. J. Herrmann, S. Luding, and E. Ramm, editors. Continuous and Discontinuous Modelling of Cohesive Frictional Materials, Berlin, 2001. Springer. Lecture Notes in Physics 568.Google Scholar
  2. 2.
    P. A. Cundall and O. D. L. Strack. A discrete numerical model for granular assemblies. Géotechnique, 29(1):47–65, 1979.Google Scholar
  3. 3.
    Y. M. Bashir and J. D. Goddard. A novel simulation method for the quasi-static mechanics of granular assemblages. J. Rheol., 35(5):849–885, 1991.CrossRefGoogle Scholar
  4. 4.
    H. J. Herrmann, J.-P. Hovi, and S. Luding, editors. Physics of dry granular media-NATO ASI Series E 350, Dordrecht, 1998. Kluwer Academic Publishers.Google Scholar
  5. 5.
    C. Thornton. Numerical simulations of deviatoric shear deformation of granular media. Géotechnique, 50(1):43–53, 2000.CrossRefGoogle Scholar
  6. 6.
    C. Thornton and L. Zhang. A dem comparison of different shear testing devices. In Y. Kishino, editor, Powders & Grains 2001, pages 183–190, Rotterdam, 2001. Balkema.Google Scholar
  7. 7.
    M. Lätzel, S. Luding, H. J. Herrmann, D. W. Howell, and R. P. Behringer. Comparing simulation and experiment of a 2d granular couette shear device. Eur. Phys. J. E, 11(4):325–333, 2003.CrossRefGoogle Scholar
  8. 8.
    M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, Oxford, 1987.MATHGoogle Scholar
  9. 9.
    D. C. Rapaport. The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge, 1995.Google Scholar
  10. 10.
    S. Luding. Collisions & contacts between two particles. In H. J. Herrmann, J.-P. Hovi, and S. Luding, editors, Physics of dry granular media-NATO ASI Series E350, page 285, Dordrecht, 1998. Kluwer Academic Publishers.Google Scholar
  11. 11.
    O. R. Walton and R. L. Braun. Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol., 30(5):949–980, 1986.CrossRefGoogle Scholar
  12. 12.
    Jüurgen Tomas. Particle adhesion fundamentals and bulk powder consolidation. KONA, 18:157–169, 2000.Google Scholar
  13. 13.
    C. Y. Zhu, A. Shukla, and M. H. Sadd. Prediction of dynamic contact loads in granular assemblies. J. of Applied Mechanics, 58:341, 1991.Google Scholar
  14. 14.
    M. H. Sadd, Q. M. Tai, and A. Shukla. Contact law effects on wave propagation in particulate materials using distinct element modeling. Int. J. Non-Linear Mechanics, 28(2):251, 1993.MATHCrossRefGoogle Scholar
  15. 15.
    S. Luding, K. Manetsberger, and J. Müllers. A disrete model for long time sintering. Journal of the Mechanics and Physics of Solids, 53(2):455, 2005.MATHCrossRefGoogle Scholar
  16. 16.
    S. Luding, E. Clément, A. Blumen, J. Rajchenbach, and J. Duran. The onset of convection in molecular dynamics simulations of grains. Phys. Rev. E, 50:R1762, 1994.CrossRefGoogle Scholar
  17. 17.
    G. Bartels, T. Unger, D. Kadau, D. E. Wolf, and J. Kertesz. The effect of contact torques on porosity of cohesive powders. Granular Matter, 7:139, 2005.MATHCrossRefGoogle Scholar
  18. 18.
    E. Dintwa, M. van Zeebroeck, E. Tijskens, and H. Ramon. Torsion of viscoelastic spheres in contact. Granular Matter, 7:169, 2005.MATHCrossRefGoogle Scholar
  19. 19.
    S. Luding, E. Clément, A. Blumen, J. Rajchenbach, and J. Duran. Anomalous energy dissipation in molecular dynamics simulations of grains: The “detachment effect”. Phys. Rev. E, 50:4113, 1994.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Stefan Luding
    • 1
  1. 1.Particle Technology, Nanostructured Materials, DelftChemTechTU DelftDelftThe Netherlands

Personalised recommendations