Advertisement

Graphs and Booleans: on the Generation of Referring Expressions

  • Kees Van Deemter
  • Emiel Krahmer
Part of the Studies in Linguistics and Philosophy book series (SLAP, volume 83)

Keywords

Conjunctive Normal Form Gradable Property Disjunctive Normal Form Computational Linguistics Subgraph Isomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bateman, J., 1999, Using Aggregation for Selecting Content when Generating Referring Expressions, Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics(acl 1999), University of Maryland.Google Scholar
  2. Chartrand, G. and O. Oellermann, 1993, Applied and Algorithmic Graph Theory, McGraw-Hill, New York.Google Scholar
  3. Dale, R., 1992, Generating Referring Expressions: Constructing Descriptions in a Domain of Objects and Processes, The MIT Press, Cambridge, Mass.Google Scholar
  4. Dale, R. and N. Haddock, 1991, Generating Referring Expressions involving Relations, In Proceedings of the European Meeting of the Association for Computational Linguistics(eacl 1991), Berlin, 161–166.Google Scholar
  5. Dale, R. and E. Reiter, 1995, Computational Interpretations of the Gricean Maxims in the Generation of Referring Expressions, Cognitive Science 18:233–263.CrossRefGoogle Scholar
  6. van Deemter, K., 2000, Generating Vague Descriptions, Proceedings of the First International Conference on Natural Language Generation (inlg 2000), Mitzpe Ramon, 179–185.Google Scholar
  7. van Deemter, 2001, Generating Referring Expressions: Beyond the Incremental Algorithm, in Procs. of 4th International Conf. on Computational Semantics (iwcs-4), Tilburg, 50–66.Google Scholar
  8. van Deemter, K. and M. Halld’orsson, 2001, Logical Form Equivalence: the Case of Referring Expressions Generation, Proceedings of 8th European Workshop on Natural Language Generation(ewnlg-2001), Toulouse.Google Scholar
  9. van Deemter, K., 2002, Generating Referring Expressions: Boolean Extensions of the Incremental Algorithm” Computational Linguistics 28(1): 37–52.CrossRefGoogle Scholar
  10. van Deemter, K. 2006, “Generating Referring Expressions that involvegradable properties”. Computational Linguistics 32 (2).Google Scholar
  11. Gardent, C., 2002, Generating minimal definite descriptions, Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, (acl 2002), Philadelphia, USA, 96–103.Google Scholar
  12. Garey, M. and D. Johnson, 1979, Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H.Freeman.Google Scholar
  13. Gibbons, A., 1985, Algorithmic Graph Theory, Cambridge University Press, Cambridge.Google Scholar
  14. Horacek, H., 1997, An Algorithm for Generating Referential Descriptions with Flexible Interfaces, Proceedings of 35th Annual Meeting of the Association for Computational Linguistics(acl 1997), Madrid, 206–213.Google Scholar
  15. Knuth, D., 1997, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3rd ed., Addison-Wesley, Reading, MA.Google Scholar
  16. Krahmer, E., S. van Erk and A. Verleg, 2001, A Meta-Algorithm for the Generation of Referring Expressions, Proceedings of 8th European Workshop on Natural Language Generation(ewnlg-2001), Toulouse, ??–??.Google Scholar
  17. Krahmer, E. S. van Erk and A. Verleg, 2003, Graph-based Generation of Referring Expressions, Computational Linguistics, 29(1): 53–72.CrossRefGoogle Scholar
  18. Krahmer, E. and M. Theune, 2002, Efficient context-sensitive generation of referring expressions, In: Information Sharing, K. van Deemter and R. Kibble (eds.), CSLI Publications, CSLI, Stanford, 223–264.Google Scholar
  19. McCluskey, E.J., 1965, Introduction to the Theory of Switching, New York. McGraw-Hill.Google Scholar
  20. Mehlhorn, K., 1984, Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness, EATCS Monographs on Theoretical Computer Science. Springer, Berlin and New York.Google Scholar
  21. Peirce, C.S., 1896, Collected Papers, Vol. 4. Edited by Charles Hartshorne and Paul Weiss. Harvard University Press, Cambridge, Mass.Google Scholar
  22. Reiter, E., 1990, The computational complexity of avoiding conversational implicatures, Proceedings of 28th Annual Meeting of the Association for Computational Linguistics(acl 1990), 97–104.Google Scholar
  23. Reiter, E. and R. Dale, 2000, Building Natural language Generation Systems. Cambridge University Press, Cambridge, UK.Google Scholar
  24. Shin, S.-J., 1994, The Logical Status of Diagrams. Cambridge University Press, Cambridge, UK.Google Scholar
  25. Stirling, J., 1730, Methodus differentialis, sive tractatus de summation et interpolation serierum infinitarium, London.Google Scholar
  26. Stone, M., 2000, On Identifying Sets, Proceedings of the First International Conference on Natural Language Generation (inlg 2000), Mitzpe Ramon, 116–123.Google Scholar
  27. Suppes, P., 1972, Axiomatic set theory, Dover Publications, New York.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Kees Van Deemter
  • Emiel Krahmer

There are no affiliations available

Personalised recommendations