Opioids, an Integrative Part in Perioperative Medicine

  • Enno Freye
  • Joseph Victor Levy


Respiratory Depression Patient Control Analgesia Volatile Anesthetic Minimal Alveolar Concentration Epidural Morphine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Geddes, I.C. and T.C. Gray, Hyperventilation for the maintenance of anaesthesia. Lancet, 1959, 2: pp. 4–6.PubMedGoogle Scholar
  2. 2.
    Laborit, H. and P. Huguenard, L’hibernation artificielle par moyens pharmacodynamiques et physiques. Presse Med, 1951, 59: pp. 1359–1365.Google Scholar
  3. 3.
    De Castro, G. and P. Mundeler, Anesthésie sans sommeil: “Neurolpetanalgésie”. Acta Chir Belg, 1959, 58: pp. 689–693.Google Scholar
  4. 4.
    De Castro, J., P. Viars, and J.C. Leleu, Utilisation de la Pentazocine comme antimorphinique et analgesique dans une technique d’anesthesie analgesique sequentielle, in Utilisation de la Pentazocine en anesthesie-reanimation, J. De Castro, P. Viars, and J.C. Leleu, Editors, 1969, Ars Medici: Bruxelles. pp. 33–36.Google Scholar
  5. 5.
    Flacke, J.W., W.E. Flacke, and G.D. Williams, Acute pulmonary edema following naloxone reversal of high dose morphine anesthesia. Anesthesiology, 1977, 47: pp. 376–378.PubMedGoogle Scholar
  6. 6.
    Gasparetto, A. and G. Giron, Clinical value of vitamin anesthesia: Thiamine algosynaptolysis according to De Castro and Mundeleer. Acta Anaesthesiol, 1964, 15: pp. 699–710.PubMedGoogle Scholar
  7. 7.
    Freye, E. and H. Agoutin, The action of vitamin B1 (thiamine) on the cardiovascular system of the cat. Biomedicine, 1978, 28: pp. 315–319.PubMedGoogle Scholar
  8. 8.
    Freye, E. and E. Hartung, The potential use of thiamine (Vit.B1) in patients with cardiac insufficiency. Acta Vtaminol Enzymol, 1982, 4: pp. 285–290.Google Scholar
  9. 9.
    Lobera, A. and J.L. Renaud-Salis, General anesthesia in major cancer surgery of the upper respiratory and digestive tracts. Significance of a fentanyl-thiamine combination. Ann Anesthesiol Fr, 1976, 17: pp. 621–627.PubMedGoogle Scholar
  10. 10.
    Lagler, F., et al., Toxikologische Untersuchungen mit Tramadol, einem neuen Analgetikum. Drug Res, 1978, 28 (I): pp. 164–172.Google Scholar
  11. 11.
    Cookson, R.F., Carfentanil and lofentanil. Clin & Anaesthesiol, 1983, 1: pp. 156–158.Google Scholar
  12. 12.
    Leysen, J.E., W. Gommeren, and C.J.E. Niemegeers, 3H-sufentanil, a superior ligand for the mu-opiate receptor: binding properties and regional distribution in rat brain and spinal cord. Eur J Pharmacol, 1983, 87: pp. 209–225.PubMedGoogle Scholar
  13. 13.
    Niemegeers, C.J.E. and P.A.J. Janssen, Alfentanil (R 39 209) – a particularly short-acting narcotic analgesic in rats. Drug Dev Res, 1981, 1: pp. 83–88.Google Scholar
  14. 14.
    De Castro, J., Association des analgésiques centraux et des neuroleptiques en cours d’intervention, in Les analgésiques et la douleur. Influences pharmacologiques diverses exercées sur morphiniques, G. Vourch, et al., Editors, 1971, Masson: Paris. pp. 185–194; 383–403.Google Scholar
  15. 15.
    De Castro, J., S. Andrieu, and J. Boogaerts, Buprenorphine: a review of its pharmacological properties and therapeutical uses. New Drug Series, ed. J. De Castro (Eds) Vol. 1. 1982, Kluwer: Antwerpen NVM & ISA. 180.Google Scholar
  16. 16.
    Bovill, J.G., et al., The pharmacokinetics of alfentanil (R 39209): a new opioid analgesic. Anesthesiology, 1982, 57: pp. 439–443.PubMedGoogle Scholar
  17. 17.
    Sebel, P.S., et al., Effects of high dose fentanyl anesthesia on the electroencephalogram. Anesthesiology, 1981, 55: pp. 203–211.PubMedGoogle Scholar
  18. 18.
    Stanley, T.H. and S. de Lange, Comparison of sufentanil-oxygen and fentanyl-oxygen anesthesia for mitral and aortic valvular surgery. J Cardiothoracic Anesth, 1988, 2: pp. 6–11.Google Scholar
  19. 19.
    De Lange, S., et al., Comparison of sufentanil-02 and fentanyl-02 for coronary artery surgery. Anesthesiology, 1982, 56: pp. 112–118.PubMedGoogle Scholar
  20. 20.
    Tolksdorf, W., et al., Adrenalin-, Noradrenalin-, Blutdruck- und Herzfreqenzverhalten während der Intubation in Abhängigkeit unterschiedlicher Fentanyl-Dosen. Anästh Intenivther Notfallmed, 1987, 22: pp. 171–176.Google Scholar
  21. 21.
    Stark, R.D., et al., A review of the safety and tolerance of propofol (Diprivan ). Postgrad Med J, 1985, 61: pp. 152–156.PubMedGoogle Scholar
  22. 22.
    Grant, I.S. and N. MacKenzie, Recovery following propofol (Diprivan) anaesthesia-a review of three different anaesthetic techniques. Postgrad Med J, 1985, 61:pp. 133–137.PubMedGoogle Scholar
  23. 23.
    Cockshott, I.D., Propofol (Diprivan) pharmacokinetics and metabolism-an overview. Postgrad Med J, 1985, 61: pp. 45–50.PubMedGoogle Scholar
  24. 24.
    Becker, L.D., et al., Biphasic respiratory depression after fentanyl-droperidol or fentanyl alone used to supplement nitrous oxide anesthesia. Anesthesiology, 1976, 44: pp. 291–296.PubMedGoogle Scholar
  25. 25.
    Habib, A.S. and T.J. Gan, Food and Drug Administration black box warning on the perioperative use of deoperidol: a review of the cases. Anesth Analg, 2003, 96: pp. 1377–1379.PubMedGoogle Scholar
  26. 26.
    Kissin, I., et al., Alfentanil potentiates midazolam-induced unconsciousness in subanalgesic doses. Anesth Analg, 1990, 71: pp. 65–69.PubMedGoogle Scholar
  27. 27.
    Oldendorf, H., et al., Clinical pharmacokinetics of midazolam in intensive care patients, a wide interpatient variability? Clin Pharmacol Ther, 1988, 43: pp. 263–269.Google Scholar
  28. 28.
    Geller, E., et al., Risk and benefits of therapy with flumazenil (Anexate ) in mixed drug intoxications. Eur Neurol, 1991, 31: pp. 241–250.PubMedGoogle Scholar
  29. 29.
    Freye, E. and A. Fournell, Postoperative Demaskierung einer überhängenden Vigilanzminderung nach Midazolameinleitung durch den Antagonisten Flumazenil (Ro 15–1788). Anaesthesist, 1988, 37: pp. 162–166.PubMedGoogle Scholar
  30. 30.
    Freye, E., B. Neruda, and K. Falke, Flumazenil (Anexate®) for the reversal of residual benzodiazepine activity. Drugs Today, 1989, 25: pp. 119–124.Google Scholar
  31. 31.
    Bergmann, S.A., et al., GABA agonists enhancer morphine and fentanyl antinociception in rabbit tooth pulp and mouse hot plate test. Drug Dev Res, 1988, 14: pp. 111–122.Google Scholar
  32. 32.
    Tejwani, G.A., et al., Inhibition of morphine-induced tolerance and dependence by a benzodiazepine receptor agonist midazolam in the rat. Anesth Analg, 1993, 76: pp. 1052–1060.PubMedGoogle Scholar
  33. 33.
    Luger, T.J., et al., The spinal potentiation effect and the supraspinal inhibitory effect of midazolam on opioid-induced analgesia in rats. Eur J Pharmacol, 1995, 275: pp. 153–162.PubMedGoogle Scholar
  34. 34.
    Rosland, J.H., S. Hunskaar, and K. Hole, Diazepam attenuates morphine antinociception test-dependently in mice. Pharmacol Toxicol, 1990, 66: pp. 382–386.PubMedGoogle Scholar
  35. 35.
    Luger, T.J., et al., Mechanisms of the influence of midazolam on morphine antinociception at spinal and supraspinal levels in rats. Eur J Pharmacol, 1994, 271:pp. 421–431.PubMedGoogle Scholar
  36. 36.
    Luger, T.J., H.F. Hill, and A. Schlager, Can midazolam diminish sufentanil analgesia in patients with major trauma? A retrospective study with 43 patients. Drug Metab Drug Interact, 1992, 10: pp. 177–184.Google Scholar
  37. 37.
    Michaels, I. and P.C. Barash, Does nitrous oxide or a reduced FI02 alter the hemodanymic function during high dose sufentanil anesthesia? Anesth Analg, 1983, 62: p. 275.Google Scholar
  38. 38.
    Murphy, M.R. and C.C. Hug, The enflurane sparing effect of morphine, butorphanol, and nalbuphine. Anesthesiology, 1982, 57: pp. 489–492.PubMedGoogle Scholar
  39. 39.
    Hall, R.I., M.R. Murphy, and C.C. Hug, The enflurane sparing effect of sufentanil in dogs. Anesthesiology, 1987, 67: pp. 518–525.PubMedGoogle Scholar
  40. 40.
    Murphy, M.R. and C.C. Hug, The anesthetic potency of fentanyl in terms of its reduction of enflurane MAC. Anesthesiology, 1982, 57: pp. 485–488.PubMedGoogle Scholar
  41. 41.
    Hecker, B.R., et al., The decrease of the minimum alveolar anesthetic concentration produced by sufentanil in rats. Anesth Analg, 1983, 62: pp. 987–990.PubMedGoogle Scholar
  42. 42.
    Hartung, E., E. Freye, and H. Dehnen-Seipel, Enflurane in cardiac surgery. Acta Anaesth Belg, 1982, 33: pp. 141–145.PubMedGoogle Scholar
  43. 43.
    Hartung, E. and E. Freye, An open comparison of propofol and enflurane for prolonged abdominal operations. Anaesthesia, 1988, 43: pp. 105–107.PubMedGoogle Scholar
  44. 44.
    Ismaily, A.J., et al., Die Auswirkungen einer Kombinationsanästhesie mit Fentanyl und Enfluran auf den Kreislauf und die unmittelbare postoperative Phase. Anäst Intensivmed, 1987, 28: pp. 216–220.Google Scholar
  45. 45.
    Hartung, H.J., Klinische Erfahrungen mit Alfentanil zur “balanced anesthesia” bei Oberbauch-Eingriffen. Anaesthesist, 1988, 37: pp. 620–624.PubMedGoogle Scholar
  46. 46.
    Stanley, T.H., Comparison of alfentanil with thiopental sodium for induction of anesthesia. 1982, Janssen Pharmazeutika, Beerse, Belgien.Google Scholar
  47. 47.
    Smith, N.T., et al., An electroencephalographic comparison of alfentanil with other narcotics and with thiopental. J Clin Monit, 1985, 1: pp. 236–244.PubMedGoogle Scholar
  48. 48.
    Redmond, D.E. and Y.H. Hwang, The primate locus coeruleus and affects of clonidine on opiate withdrawal. J Clin Psychiatr, 1982, 43: pp. 25–31.Google Scholar
  49. 49.
    Eisenach, J.C., S.Z. Lysak, and C.M. Viscomi, Epidural clonidine analgesia following sugery. Phase I. Anesthesiology, 1989, 71: pp. 640–646.PubMedGoogle Scholar
  50. 50.
    Eisenach, J.C., et al., Epidural clonidine analgesia for intractable cancer pain. Phase I. Anesthesiology, 1989, 71: pp. 647–652.PubMedGoogle Scholar
  51. 51.
    Eisenach, J.C., et al., The epidural clonidine study group: epidural clonidine analgesia for intractable cancer pain. Pain, 1995, 61: pp. 391–399.PubMedGoogle Scholar
  52. 52.
    Flacke, J.W., et al., Reduced narcotic requirement by clonidine with improved hemodynamic and adrenergic stability in patients undergoing coronary bypass surgery. Anesthesiology, 1987, 67: pp. 11–19.PubMedGoogle Scholar
  53. 53.
    Ghignone, M., Effects of clonidine on narcotic requirements and hemodynamic response during induction of fentanyl anesthesia and endotracheal intubation. Anesthesiology, 1987, 67: pp. 3–10.PubMedGoogle Scholar
  54. 54.
    Aantaa, R., A. Kallio, and R. Virtanen, Dexmedetomidine, a novel alpha2-adrenergic agonist: A review of its pharmacodynamic profile. Drugs Future, 1993, 18: pp. 49–56.Google Scholar
  55. 55.
    Noyer, M., et al., Mivazerol, a novel compound with high binding specificity for alpha2 adrenergic receptor: binding studies on different human and rat membrane preparations. Neurochem Int, 1994, 24: pp. 221–229.PubMedGoogle Scholar
  56. 56.
    McSPI-Europe, Perioperative sympathicolysis. Beneficial effects of the alpha2-agonist mivazerol on hemodynamic stability and myocardial ischemia. Anesthesiology, 1997, 86: pp. 346–363.Google Scholar
  57. 57.
    Carabine, U.A., K.R. Milligan, and J. Moore, Extradural clonidine and bupivacaine for postoperative analgesia. Br J Anaesthesia, 1992, 68 (2): pp. 132–135.Google Scholar
  58. 58.
    Motsch, J., E. Gräber, and K. Ludwig, Addition of clonidine enhances postoperative analgesia from epidural morphine; a double blind study. Anesthesiology, 1990, 73: pp. 1067–1073.PubMedGoogle Scholar
  59. 59.
    Gabriel, A.H., et al., Clonidine: an adjunct in isoflurane N20/02 relaxant anaesthesia. Anaesthesia, 1995, 50: pp. 290–296.PubMedGoogle Scholar
  60. 60.
    Engelman, E., et al., Effects of clonidine on anesthetic requirements and hemodynamic response during aortic surgery. Anesthesiolgy, 1989, 71: pp. 178–187.Google Scholar
  61. 61.
    Hoffmann, W.E., et al., Dexmedetomidine improves neurologic outcome from incomplete ischemia in the rat: reversal by the alpha2 antagonist atipamezole. Anesthesiology, 1991, 75: pp. 328–332.Google Scholar
  62. 62.
    Jarrot, B., et al., Clonidine: understanding its disposition, sites and mechanism of action. Clin Exp Pharmacol Physiol, 1987, 14: pp. 471–479.Google Scholar
  63. 63.
    Bjoerkqvist, S.E., Clonidine in alcohol withdrawal. Acta Psychiat Scand, 1975, 52: p. 256.Google Scholar
  64. 64.
    Kleber, H.D., et al., Clonidine and naltrexone in the outpatient treatment of heroin withdrawal. Am J Drug Alcohol Abuse, 1987, 13 (1, 2): pp. 1–17.PubMedGoogle Scholar
  65. 65.
    Vining, D.H., T.R. Kosten, and H.D. Kleber, Clinical utility of rapid clonidine-naltrexone detoxification for opioid abusers. Br J Addict, 1988, 63: pp. 567–575.Google Scholar
  66. 66.
    Striebel, H.W., D. Koenigs, and T. Heil, Clonidin – Stellenwert in der Anästhesie. Anaesthesist, 1993, 42: pp. 131–141.PubMedGoogle Scholar
  67. 67.
    Maze, M. and W. Tranquilli, Alpha-2 adrenoreceptor agonists: defining the role in clinical anesthesisa. Anesthesiology, 1991, 74: pp. 581–605.PubMedGoogle Scholar
  68. 68.
    Cube von, B., et al., Permeation morphinartiger Substanzen an den Ort der antinociceptiven Wirkung im Gehirn in Abhängigkeit von ihrer Lipoidlöslichkeit nach intravenöser und nach intraventrikulärer Applikation. Naunyn-Schmiedebergs Arch Pharmacol, 1970, 265: pp. 455–473.Google Scholar
  69. 69.
    Prys-Roberts, C. and C.E. Hug, Pharmacokinetics of Anaesthesia. 1984, Blackwell: Oxford Scientific Publications.Google Scholar
  70. 70.
    Hug, C.C.J., Pharmacokinetics of new synthetic narcotic analgesics, in Opioids in Anesthesia, F.G. Estafanous, Editor, 1984, Butterworth: Boston. pp. 50–60.Google Scholar
  71. 71.
    Westmoreland, C., et al., Pharmacokinetics of remifentanil (GI87084B). Anesthesiology, 1993, 79 (3A): p. A372.Google Scholar
  72. 72.
    Hermann, D.J., et al., Pharmacokinetic comparison of GI87084B, a novel ultra-short acting opioid, and alfentanil. Anesthesiology, 1991, 75: p. A379.Google Scholar
  73. 73.
    Taeger, K., et al., Uptake of fentanyl by human lung. Anesthesiology, 1984, 61: p. A246.Google Scholar
  74. 74.
    Cube von, B., et al., Permeation of morphine-like substances to their site of antinociceptive action in the brain after intravenous and intraventricular application and dependence on lipid solubility. Arch Pharmacol, 1970, 265: pp. 455–502.Google Scholar
  75. 75.
    Stanski, D.R. and C.C. Hug, Alfentanil-a kinetically predictable narcotic analgesic. Anesthesiology, 1982, 57: pp. 435–438.PubMedGoogle Scholar
  76. 76.
    Schenk, H.D., F.B.M. Ensink, and M. Rhönisch, Alfentanil – Porträt eines Opioids zur Anästhesie. 1993, Urban & Schwarzenberg: München-Wien-Baltimore. 1–144.Google Scholar
  77. 77.
    Scott, J.G., J.E. Cooke, and D.R. Stanski, Electroencephalographic quantitation of opioid effects: comparative pharmacodnamics of fentanyl and sufentanil. Anesthesiology, 1991, 74: pp. 34–42.PubMedGoogle Scholar
  78. 78.
    Michiels, M., R. Hendricks, and J. Heykants, A sensitive radioimmunassay for fentanyl: plasma levels in dogs and man. Eur J Pharmacol, 1974, 12: p. 153.Google Scholar
  79. 79.
    Miller, R.D., IV drug delivery systems, in Anesthesia. 2000, Churchill Livingstone: Oxford. pp. 377–408.Google Scholar
  80. 80.
    Shafer, S.L. and S.R. Varvel, Pharmacokinetics, pharmacodynamics, and rational opioid selection. Anesthesiology, 1991, 74: pp. 1136–1138.Google Scholar
  81. 81.
    Scott, J.C., K.V. Ponganis, and D.R. Stanski, EEG quantification of narcotic effect: the comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology, 1985, 62: pp. 234–241.PubMedGoogle Scholar
  82. 82.
    Lemmens, H.J.M., et al., The application of pharmacokinetics dynamics and computer simulations to drug development: A-3665 versus fentanyl and alfentanil. Anesthesiology, 1992, 77 (3A): p. A456.Google Scholar
  83. 83.
    Ausems, M.E., D.R. Stanski, and C.C.J. Hug, An evaluation of the accuracy of pharmacokinetic data for the computer assisted infusion of alfentanil. Br J Anaesth, 1985, 57: pp. 1217–1225.PubMedGoogle Scholar
  84. 84.
    Egan, T.D., et al., The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology, 1993, 79: pp. 881–892.PubMedGoogle Scholar
  85. 85.
    McDonnell, T.E., R.R. Bartowski, and J.J. Williams, ED50 of alfentanil for induction of anesthesia in unpremedicated young adults. Anesthesiology, 1982, 57: p. A362.Google Scholar
  86. 86.
    Minto, C.F., T.W. Schnider, and S.L. Shafer, Pharmacokinetics and pharmacodynamics of remifentanil. II-Model application. Anesthesiology, 1997, 86: pp. 24–33.PubMedGoogle Scholar
  87. 87.
    Hughes, M.A., P.S.A. Glass, and J.R. Jacobs, Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology, 1992, 76: pp. 334–341.PubMedGoogle Scholar
  88. 88.
    Egan, T.D., Remifentanil pharmacokinetics and pharmacodynamics. Clin Pharmacokinet, 1995, 29: pp. 80–94.PubMedGoogle Scholar
  89. 89.
    Read, D.J.C., A clinical method for assessing the ventilatory response to carbon dioxide. Aust Ann Med, 1979, 16: pp. 20–32.Google Scholar
  90. 90.
    Suttmann, H. and A. Doenicke, Interim report on dose-establishment with alfentanil. 1983, Janssen Pharmaceutica, Beerse, Belgium.Google Scholar
  91. 91.
    Freye, E., E. Hartung, and R. Buhl, Alfentanil als letzte Dosis (on-top) in der Neuroleptanalgesie mit Fentanyl. Anaesthesist, 1986, 35: pp. 231–237.PubMedGoogle Scholar
  92. 92.
    Nauta, J., et al., Anesthetic induction with alfentanil: a new short-acting narcotic analgesic. Anest Analg, 1982, 61: pp. 267–272.Google Scholar
  93. 93.
    Sebel, P.S., N. De Brujin, and W.K. Neville, Median nerve somatosensory evoked potentials during anesthesia with sufentanil or fentanyl. Anesthesiology, 1988, 69 (A312).Google Scholar
  94. 94.
    Kochs, E., et al., Modulation of pain-related somatosensory evoked potentials by general anesthesia. Anesth Analg, 1990, 71: pp. 225–2230.PubMedGoogle Scholar
  95. 95.
    Freye, E. and B. Neruda, Averaged somatosensory evoked potentials for intraoperative evaluation of analgesia in patients. J Clin Monit, 1988, 4: pp. 138–139.Google Scholar
  96. 96.
    Rundshagen, I., E. Kochs, and J. Schulte am Esch, Surgical stimulation increases median nerve somatosensory evoked responses during isoflurane-nitrous oxide anaesthesia. Br J Anaesth, 1995 (75).Google Scholar
  97. 97.
    Freye, E., Somatosensorisch evozierte Potentiale (SEP) zur Algesiemetrie, in Alfentanil – Ein neues, ultrakurzwirkendes Opioid, M. Zindler and E. Hartung, Editors, 1985, Urban & Schwarzenberg: München-Wien-Baltimore. pp. 17–23.Google Scholar
  98. 98.
    Minto, C.F., et al., Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I.Model development. Anesthesiology, 1997, 86: pp. 10–13.PubMedGoogle Scholar
  99. 99.
    Crawford, M.W., et al., Development of acute opioid tolerance during infusion of remifentanil for pediatric scoliosis surgery. Anwesth Analg, 2006, 102: pp. 1662–1667.Google Scholar
  100. 100.
    Guignard, B., et al., Acute opioid tolerance: intraoperative remifentanil increases postoperative pain and morphine requirements. Anesthesiology, 2000, 93: pp. 409–417.PubMedGoogle Scholar
  101. 101.
    Albrecht, S., et al., Postoperative pain control following remifentanil-based anaesthesia for major abdomional surgery. Anaesthesia, 2000, 55: pp. 315–322.PubMedGoogle Scholar
  102. 102.
    De Castro, J., et al., Comparative study of cardiovascular, neurological, and metabolic side effects of eight narcotics in dogs. Acta Anaesth Belg, 1979, 30: pp. 5–99.PubMedGoogle Scholar
  103. 103.
    Van Bever, W.F.M., et al., N-4-substituted 1-(2arylethyl)-4-piperidinyl-N-phenylpropanamides, a novel series of extremely poteut analgesics with unusually high safety margin. Drug Res/Arzneimittelforsch, 1978, 26: pp. 1548–1551.Google Scholar
  104. 104.
    Niemegeers, C.J.E., et al., Sufentanil, a very potent and extremely safe intravenous morphine-like compound in mice, rats and dogs. Drug Res/Arzneimittelforsch, 1976, 216: pp. 1551–1556.Google Scholar
  105. 105.
    Janssen, P.A.J., The development of new synthetic narcotics, in Opioids in Anesthesia, F.G. Estafanous, Editor, 1984, Butterworth: Boston. pp. 37–44.Google Scholar
  106. 106.
    Tollenaere, J.P. and H. Moereels, Atlas of the three-dimensional structure of drugs. 1979, Amsterdam, New York, Elsevier: Oxford/North Holland Biomedical Press.Google Scholar
  107. 107.
    Magnan, J., et al., The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties. Naunyn-Schmiedebergs Arch Pharmacol, 1982, 319: pp. 197–205.PubMedGoogle Scholar
  108. 108.
    Flacke, J.W., et al., Comparison of meperidine, fentanyl and sufentanil in balanced anesthesia. Anesth Analg, 1985, 64: pp. 897–910.PubMedGoogle Scholar
  109. 109.
    De Lange, S., et al., Antidiuretic and growth hormone responses during coronary artery surgery with sufentanil-oxygen and alfentanil-oxygen anesthesia in man. Anesth Analg, 1982, 61: p. 434.PubMedGoogle Scholar
  110. 110.
    De Lange, S., et al., Catecholamine and cortisol responses to sufentanil-O2 and alfentanil-O2 anaesthesia during coronary artery surgery. Can Anaesth Soc J, 1983, 30: p. 248.PubMedGoogle Scholar
  111. 111.
    Bailey, P.L., et al., Sufentanil produces shorter lasting respiratory depression and longer lasting analgesia than equipotent doses of fentanyl in human volunteers. Anesthesiology, 1986, 65: p. A493.Google Scholar
  112. 112.
    Bailey, P.L., et al., Differences in magnitude and duration of opioid induced respiratory depression and analgesia with fentanyl and sufentanil. Anesth Analg, 1990, 70: pp. 8–15.PubMedGoogle Scholar
  113. 113.
    Spiegel, K. and G.W. Pasternack, Meptazinol: a novel mu-1 selective opioid analgesic. J Pharmacol Expt Ther, 1984, 228: pp. 414–419.Google Scholar
  114. 114.
    Jaffe, J.H. and W.R. Martin, Opioid analgesics and antagonists, in The Pharmacological Basis of Therapeutics, A.F. Gilman, et al., Editors, 1990, Pergamon Press: New York. pp. 485–531.Google Scholar
  115. 115.
    Bovill, J.G., et al., Electroencephalographic effects of sufentanil anaesthesia in man. Br J Anaesth, 1982, 54: pp. 45–52.PubMedGoogle Scholar
  116. 116.
    Bowdle, T.A. and R.J. Ward, Induction of anesthesia with small doses of sufentanil or fentanyl: dose versus EEG response, speed of onset, and thiopental requirement. Anesthesiology, 1989, 70: pp. 26–30.PubMedGoogle Scholar
  117. 117.
    Hilgenberg, J.C., Intraoperative awareness during high dose fentanyl-oxygen anesthesia. Anesthesiology, 1981, 54: pp. 341–343.PubMedGoogle Scholar
  118. 118.
    Mummaneni, N., T.L.K. Tao, and A. Montoya, Awareness and recall during high-dose fentanyl-oxygen anesthesia. Anesth Analg, 1980, 59: pp. 948–949.PubMedGoogle Scholar
  119. 119.
    Freye, E. and E. Hartung, Kardiovaskuläre und zentralnervöse Effekte unter Fentanyl versus Sufentanil bei der Intubation herzchirurgischer Patienten. Anästhesie Aktuell, 1993, 9: pp. 3–14.Google Scholar
  120. 120.
    Brian, S.E. and A.B. Seifen, Tonic-clonic activity after sufentanil. Anesth Analg, 1987, 66: p. 481.PubMedGoogle Scholar
  121. 121.
    Freye, E., E. Hartung, and R. Buhl, Die Lungencompliance wird durch die rasche Injektion von Alfentanil beeinträchtigt. Anaesthesist, 1986, 35: pp. 543–546.PubMedGoogle Scholar
  122. 122.
    Smith, N.T., et al., EEGs during high-dose fentanyl, sufentanil-, or morphine-oxygen anesthesia. Anesth Analg, 1984, 63: p. 386.PubMedGoogle Scholar
  123. 123.
    Katz, R.I., et al., Two instances of seizure-like activity in the same patient associated with two different narcotics. Anesth Analg, 1988, 67: p. 289.PubMedGoogle Scholar
  124. 124.
    Young, W.L., et al., The effect of sufentanil on cerebral hemodyamics during carotid endarterectomy. Anesthesiology, 1988, 69: p. A591.Google Scholar
  125. 125.
    Keykhah, M.M., D.S. Smith, and C. Carlson, Influence of sufentanil on cerebral metabolism and circulation in the rat. Anesthesiology, 1985, 63: pp. 274–277.PubMedGoogle Scholar
  126. 126.
    Werner, C., Der Einfluβ von Sufentanil auf die regionale und globale Hirndurchblutung und den zerebralen Sauerstoffverbrauch beim Hund. Anaesthesist, 1992, 41: pp. 34–38.PubMedGoogle Scholar
  127. 127.
    Milde, L.N., J.H. Milde, and W.J. Gallagiter, Effects of sufentanil on cerebral circulation and metabolism in dogs. Anesth Analg, 1990, 70 (2): pp. 138–146.PubMedGoogle Scholar
  128. 128.
    Weinstabl, C., et al., Effects of sufentanil on intracranial pressure in neurological patients. Anaesthesia, 1991, 46: pp. 837–840.PubMedGoogle Scholar
  129. 129.
    Sperry, R.J., et al., Fentanyl and sufentanil increase intracranial pressure in head trauma patients. Anesthesiology, 1992, 77 (3): pp. 416–420.PubMedGoogle Scholar
  130. 130.
    Stephan, H., et al., Einfluβ von Sufentanil auf Hirndurchblutung, Hirnstoffwechsel und die C02-Reaktivität der menschlichen Hirngefäβe. Anaesthesist, 1991, 40: pp. 153–160.PubMedGoogle Scholar
  131. 131.
    Freye, E., et al., Slow EEG-power spectra correlate with hemodynamic changes during laryngoscopy and intubation following induction with fentanyl and sufentanil. Acta Anaesth Belg, 1999, 50: pp. 71–76.PubMedGoogle Scholar
  132. 132.
    Hull, R.I., R.I. Murphy, and C.C. Hug, The enflurane sparing effect of sufentanil in dogs. Anesthesiology, 1987, 67: pp. 518–525.Google Scholar
  133. 133.
    Monk, J.P., R. Beresford, and A. Ward, Sufentanil: A review of its pharmacological properties and therapeutic use. Drugs, 1988, 36: pp. 286–313.PubMedGoogle Scholar
  134. 134.
    Gravlee, G.P., F.M. Ramsey, and R.C. Roy, Rapid administration of a narcotic and a neuromuscular blocker: a hemodynamic comparison of fentanyl, sufentanil, pancuronium, and vecuronium. Anesth Analg, 1988, 67: pp. 39–47.PubMedGoogle Scholar
  135. 135.
    Brizgys, R.V., R. Morales, and B. Owens, Effects of thiopental requirements and hemodynamic response during induction and intubation. Anesthesiology, 1985, 63: p. A377.Google Scholar
  136. 136.
    Lappas, D.G., et al., Filling pressures of the heart and pulmonary circulation of the patient with coronary artery disease after large doses of morphine. Anesthesiology, 1975, 42: p. 153.PubMedGoogle Scholar
  137. 137.
    Lappas, D.G., I. Placios, and C. Athanasiadis, Sufentanil dosage and myocardial blood flow and metabolism in patients with coronary artery disease. Anesthesiology, 1985, 63: p. A58.Google Scholar
  138. 138.
    Becker, C.E., et al., A quick guide to common drug interaction, in Patient Care, J. Bigelow, Editor, 1974, Miller & Fink: Philadelphia. pp. 1–32.Google Scholar
  139. 139.
    Sifton, D.W., Drug Interaction and Side Effects Index . 42 ed. Physicians Desk Reference (PDR), ed. M. Trelewicz. 1988, Medical Economics Company Inc.: Oradell, N.Y. 1–787.Google Scholar
  140. 140.
    Coté, D., R. Martin, and J.P. Tétrault, Haemodynamic interactions of muscle relaxants and sufentanil in coronary artery surgery. Can J Anaesth, 1991, 38(3): pp. 324–329.PubMedGoogle Scholar
  141. 141.
    Maurer, P.M. and R.R. Bartkowski, Drug interactions of clinical significance with opioid analgesics. Druf Safety, 1993, 8: pp. 30–48.Google Scholar
  142. 142.
    Bovill, J.G., et al., Electroencephalographic effects of sufentanil anaesthesia in man. Br J Anaesth, 1982, 54: pp. 45–52.PubMedGoogle Scholar
  143. 143.
    Helmers, J.H., L. Van Leuwen, and W. Zuurmond, Sufentanil-Dosierungsstudie bei allgemeinen chrirurgischen Eingriffen. Anaesthesist, 1989, 38: pp. 397–400.PubMedGoogle Scholar
  144. 144.
    Gerwig, W.H., C.W. Thompson, and P. Blades, Pain control following upper abdominal operations. Arch Surg, 1951, 62: pp. 678–682.Google Scholar
  145. 145.
    Morris, T. and J. Tracey, Lignocaine: its effect on wound healing. Br J Surg, 1977, 64: pp. 902–903.PubMedGoogle Scholar
  146. 146.
    Dundee, J.W., Problems associated with strong analgesics, in Pain. New Perspectives in Measurement and Management, A.W. Harcus, R. Smith, and B. Whittle, Editors, 1977, Churchill Livingstone: Edinburgh, London, New York. pp. 57–62.Google Scholar
  147. 147.
    Ferrari, H.A., R.L. Fuson, and S.J. Dent, The relationship of the anaesthetic agent to postoperative analgesic requirements. South Med J, 1969, 62: pp. 1201–1203.PubMedGoogle Scholar
  148. 148.
    Clark, N.J., et al., Comparison of sufentanil-N2O and fentanyl-N2O in patients without cardiac disease undergoing general surgery. Anesthesiology, 1987, 66: pp. 130–135.PubMedGoogle Scholar
  149. 149.
    Suwatakul, K., et al., Analysis of narcotic analgesic usage in the treatment of postoperative pain. JAMA, 1983, 250: pp. 926–929.Google Scholar
  150. 150.
    Koo, P.J., Postoperative pain management with a patient-controlled transdermal delivery system for fentanyl. Am J Health Syst Pharm, 2005, 62: pp. 1171–1176.PubMedGoogle Scholar
  151. 151.
    Striebel, H., J. Hackenberger, and A. Wesel, Beurteilung der postoperativen Schmerzintensität. Selbst- versus Fremdbeurteilung. Schmerz, 1992, 6: pp. 199–203.Google Scholar
  152. 152.
    Ripamonti, C., Pain experienced by patients hospitalized at the National Cancer Institute of Milan: Research project “towards a pain-free hospital”. Tumori, 2000, 86: pp. 412–418.PubMedGoogle Scholar
  153. 153.
    Strohbücker, B., H. Mayer, and G. Evers, Schmerzprävalenz an den Unikliniken Köln: Vorkommen und Intensität von Schmerzen bei stationären Patienten. Unveröffentlichte Masterarbeit, 2001, Institut für Pflegewissenschaft, Medizinische Fakultät, Universität Witten/Herdecke.Google Scholar
  154. 154.
    Marks, R.M. and E.J. Sachar, Undertreatment of medical inpatients with narcotic analgesics. Ann Int Med, 1973, 78: pp. 173–181.PubMedGoogle Scholar
  155. 155.
    Angell, M., The quality of mercy. New Engl J Med, 1982, 306: pp. 98–99.PubMedGoogle Scholar
  156. 156.
    Porter, J. and H. Hick, Addiction rare in patients treated with narcotics. New Engl J Med, 1980, 302: pp. 123–126.PubMedGoogle Scholar
  157. 157.
    Taub, A., Opioid analgesics in the treatment of chronic intractable pain of non-neoplastic origin, in Narcotic Analgesics in Anesthesiology, L.M. Kitahata and J.G. Collins, Editors, 1982, Williams and Wilkins: Baltimore. pp. 199–208.Google Scholar
  158. 158.
    Portenoy, R.K. and K.M. Foley, Chronic use of opioid analgesics in non-malignant pain: Report of 38 cases. Pain, 1986, 25: pp. 171–186.PubMedGoogle Scholar
  159. 159.
    Eide, W.K., Wind-up and the NMDA receptor complex from a clinical perspective. Eur J Pain, 2000, 4: pp. 5–17.PubMedGoogle Scholar
  160. 160.
    Barsoum, M.W., Comparison of the efficacy and tolarability of tramadol, pethidine and nalbuphine in children with postoperative pain. Clin Drug Invest, 1995, 9: pp. 183–190.Google Scholar
  161. 161.
    Quiding, H., et al., Infants and young children metabolise codeine to morphine. A study after single and repeated rectal administration. Br J Clin Pharmacol, 1992, 33: pp. 45–49.PubMedGoogle Scholar
  162. 162.
    Moore, R.A. and H.J. McQuay, Single-patient data meta-analysis of 3453 postoperative patients: oral tramadol versus placebo, codeine and combination analgesics. Pain, 1997, 69: pp. 287–294.PubMedGoogle Scholar
  163. 163.
    Lewis, J.W., Buprenorphine. Drug Alcohol Depend, 1985, 14: pp. 363–372.PubMedGoogle Scholar
  164. 164.
    Heel, R.C., et al., Buprenorphine: a review of its pharmacological properties and therapeutic efficacy. Drugs, 1979, 17: pp. 81–100.PubMedGoogle Scholar
  165. 165.
    Lewis, J.W. Structure-activity relationships of opioids – a current perspective. in VIII. International Symposium on Medicinal Chemistry. 1985, Stockholm: Swedish Pharmaceutical Press.Google Scholar
  166. 166.
    Krizanits-Weine, F., et al., Präemptive Analgesie mit retardiertem Dihydrocodein bei Patienten mit elektiven Kniearthroskopien. Schmerz, 1996, 10: p. S54.Google Scholar
  167. 167.
    Steffen, P., et al., Nichtinvasive perioperative Analgesie nach Allgemeinanästhesien. Kombination von Dihydrocodein ret. mit den Nichtopioidanalgetika Diclofenac und Metamizol. Schmerz, 1996, 10: p. S51.Google Scholar
  168. 168.
    Lotsch, J., et al., Fatal respiratory depression after multiple intravenous morphine injections. Clin Pharmacokinet, 2006, 45: pp. 1051–1060.PubMedGoogle Scholar
  169. 169.
    Wen-Ying, C., et al., Human opioid receptor A118G polymorphism affects intravenous patient-controlled analgesia morphine consumption after total abdominal hysterectomy. Anesthesiology, 2006, 105: pp. 334–337.Google Scholar
  170. 170.
    Good, P., et al., Prospective audit of short-term concurrent ketamine, opioid and anti-inflammatory (‘triple-agent’) therapy for episodes of acute and chronic pain. Intern Med J, 2005, 35: pp. 39–44.PubMedGoogle Scholar
  171. 171.
    Saarne, A., Clinical evaluation of a new analgesic piritramide. Acta Anaesthesiol Scand, 1969, 13: pp. 11–19.PubMedGoogle Scholar
  172. 172.
    Schmidt, W.K., et al., Nalbuphine. Drug Alcohol Depend, 1985, 14: pp. 339–362.PubMedGoogle Scholar
  173. 173.
    Wood, P.L., Kappa agonists analgesics: evidence for μ2 and delta opioid receptor antagonism. Drug Dev Res, 1984, 4: pp. 429–435.Google Scholar
  174. 174.
    Wermeling, D.P., et al., Patient-controlled analgesia using butorphanol for postoperative pain control: an open label study, in Butorphanol Tartrate: Research Advances in Multiple Clinical Settings, C.E. Rosow, Editor, 1986, S. Karger: Basel, Paris, London, New York, Singapore, Sydney. pp. 31–39.Google Scholar
  175. 175.
    Freye, E., L. Azevedo, and E. Hartung, Reversal of fentanyl-related respiratory depression with nalbuphine; effects on the CO2-response curve of man. Acta Anaesth Belg, 1985, 36: pp. 365–374.PubMedGoogle Scholar
  176. 176.
    Magruder, M.R., R.D. DeLaney, and C.A. DiFazio, Reversal of narcotic-induced respiratory depression with nalbuphine hydrochloride. Anesthesiol Rev, 1982, 9: pp. 34–37.Google Scholar
  177. 177.
    McCammon, R.L., R.K. Stoelting, and J.A. Madura, Effects of butorphanol, nalbuphine, and fentanyl on intrabiliary tract dynamics. Anesth Analg, 1984, 63: pp. 139–142.PubMedGoogle Scholar
  178. 178.
    Romagnoli, A. and A.S. Keats, Ceiling effect for respiratory depression by nalbuphine. Clin Pharmacol Ther, 1980, 27: pp. 478–485.PubMedGoogle Scholar
  179. 179.
    Herz, A., Opiat-Partialantagonisten, in Pentazocin im Spiegel der Erfahrungen, S. Kubicki and G.A. Neuhaus, Editors, 1981, Springer: Berlin-Heidelberg-New York. pp. 19–21.Google Scholar
  180. 180.
    Gal, T.J., C.A. Di Fazo, and J. Moscicki, Analgesic and respiratory depressant activity of nalbuphine: a comparison with morphine. Anesthesiology, 1982, 57: pp. 367–374.Google Scholar
  181. 181.
    Abboud, T.K., et al., Transnasal butorphanol: a new method for pain relief in post-cesarean section pain. Acta Anaesthesiol Scand, 1991, 35: pp. 14–18.PubMedGoogle Scholar
  182. 182.
    Wetchler, B.V., C.D. Alexander, and M.A. Uhll, Transnasal butorphanol tartrate for pain control following ambulatory surgery. Curr Ther Res, 1992, 52 (4): pp. 571–580.Google Scholar
  183. 183.
    Joyce III, T.H., et al., Efficacy of transnasal butorphanol tartrate in postepisiotomy pain: a model to assess analgesia. Clin Therap, 1993, 15 (1): pp. 160–167.Google Scholar
  184. 184.
    Shyu, W.C., et al., Multiple-dose phase I study of transnasal butorphanol. Clin Pharmacol Ther, 1993, 54: pp. 34–41.PubMedGoogle Scholar
  185. 185.
    Couch, J., et al. Evaluation of the efficacy and safety of Stadol® NS (transnasal butorphanol) in the treatment of acute migraine in outpatients. in 7th World Congress on Pain. 1993, Paris: ISAP Publications.Google Scholar
  186. 186.
    Diamond, S., et al., Transnasal butorphanol in the treatment of migraine headache pain. Headache Quat Curr Treat Res, 1992, 3 (2): pp. 164–171.Google Scholar
  187. 187.
    Morrison, C.E., et al., Pethidine compared with meptazinol during labour; a prospective randomised double-blind study in 1100 patients. Anaesthesia, 1987, 42: pp. 7–14.PubMedGoogle Scholar
  188. 188.
    Jordan, C., A comparison of the respiratory effects of meptazinol, pentazocine and morphine. Br J Anaesth, 1979, 51: pp. 497–501.PubMedGoogle Scholar
  189. 189.
    Keeri-Szanto, M., Drugs or drums: what relieves postoperative pain? Pain, 1979, 6: pp. 217–230.PubMedGoogle Scholar
  190. 190.
    Eagen, K.J. and L. Ready, Patient satisfaction with intravenous PCA or epidural morphine. Can J Anaesth, 1994, 41: pp. 6–11.Google Scholar
  191. 191.
    White, P.F., Mishaps with patient-controlled analgesia. Anesthesiology, 1987, 66: pp. 81–83.PubMedGoogle Scholar
  192. 192.
    Thomas, D.W. and H. Owen, Patient-controlled analgesia – the need for caution. Anaesthesia, 1988, 43: pp. 770–772.PubMedGoogle Scholar
  193. 193.
    Parker, R.K., B. Holtmann, and P.F. White, Patient-controlled analgesia: does a concurrent opioid infusion improve pain mangement after surgery? JAMA, 1991, 266 (14): pp. 1947–1952.PubMedGoogle Scholar
  194. 194.
    Lehmann, K.A., Neue Möglichkeiten zur Behandlung akuter Schmerzen. Drug Res Arzneimittelforsch, 1984, 34: pp. 1108–1114.Google Scholar
  195. 195.
    Ginsberg, B., et al., The influence of lockout intervals and drug selection on patient-controlled analgesia following gynecological surgery. Pain, 1995, 62: pp. 95–100.PubMedGoogle Scholar
  196. 196.
    Butscher, K., J.Y. Mazoit, and K. Samii, Can immediate opioid requirements in the post-anaesthesia care unit be used to determine analgesic requirements on the ward? Can J Anaesth, 1995, 42: pp. 461–466.PubMedGoogle Scholar
  197. 197.
    Krimmer, H., et al., Die kombinierte infusionsanalgesie – Ein alternatives Konzept zur postoperativen Schmerztherapie. Chirurg, 1986, 57: pp. 327–329.PubMedGoogle Scholar
  198. 198.
    Viscusi, E.R., et al., Non-invasive, patient-controlled, fentanyl HCl analgesia: comparison of safety and efficacy to intravenous morphine pump for the treatment of postoperative pain after major surgery: a randomized, multi-center trial. Anesth Analg, 2002, 94: p. S. 224.Google Scholar
  199. 199.
    Friedman, J.D. and F.A. Dello Buono, Opioid antagonists in the treatment of opioid-induced constipation and pruritus. Am Pharmacother, 2003, 35: pp. 85–91.Google Scholar
  200. 200.
    Kurz, A. and D.I. Sessler, Opioid-induced bowel dysfunction; pathophysiology and potential new therapies. Drugs, 2003, 63: pp. 649–671.PubMedGoogle Scholar
  201. 201.
    Liu, S.S., et al., ADL 8-2698, a trans-3, 4-dimethyl-4-(3-hydroxyphenyl) piperidine, prevents gastrointestinal effects of intravenous morphine without affecting analgesia. Clin Pharmacol Ther, 2001, 69: pp. 66–71.PubMedGoogle Scholar
  202. 202.
    Holte, K. and H. Kehlet, Prevention of postoperativ ileus. Minerva Anesthesiol, 2002, 68: pp. 152–156.Google Scholar
  203. 203.
    Taguchi, A., et al., Selective postoperative inhiibition of gastrointestinal opioid receptors. N Engl J Med, 2001, 345: pp. 935–940.PubMedGoogle Scholar
  204. 204.
    Schmidt, W.K., Alvimopan* (ADL 8-2698) is a novel peripheral opioid antagonist. Am J Surg, 2001, 182: pp. 27S–38S.PubMedGoogle Scholar
  205. 205.
    Yuan, C.S. and J.F. Foss, Methylnaltrexone: investigation of clinical applications. Drug Dev Res, 2000, 50: pp. 133–141.Google Scholar
  206. 206.
    Yuan, C.S., et al., The safety and efficacy of oral methylnaltrexone in preventing morphine-induced delay in oral cecal transit time. Clin Pharmacol Ther, 1997, 61: pp. 1–9.Google Scholar
  207. 207.
    Yuan, C.S. and J.F. Foss, Oral methylnaltrexone for opioid-induced constipation. JAMA, 2000, 284: pp. 1383–1384.PubMedGoogle Scholar
  208. 208.
    Yuan, C.S., et al., Methylnaltrexone prevents morphine-induced delay on oral-cecal transit time without affecting analgesia: a double-blind randomized placebo-controlled trial. Clin Pharmacol Ther, 1996, 59: pp. 469–475.PubMedGoogle Scholar
  209. 209.
    Stevens, C.W., et al., Biochemical characterization and regional quantification of mu, delta, and kappa opioid binding sites in rat spinal cord. Brain Res, 1991, 550: pp. 77–85.PubMedGoogle Scholar
  210. 210.
    Rawal, N., Klinischer Einsatz der rückenmarknahen Opioidanalgesie, Teil 1. Der Schmerz, 1996, 10: pp. 176–189.PubMedGoogle Scholar
  211. 211.
    Börner, U., et al., Epidurale Opiatanalgesie – Gewebe und Liquorverträglichkeit der Opiate. Anaesthesist, 1980, 29: pp. 570–571.PubMedGoogle Scholar
  212. 212.
    Bürkle, H., S. Dunbar, and H. van Aken, Remifentanil: a novel, short-acting, μ-opioid. Anesth Analg, 1996, 83: pp. 646–651.PubMedGoogle Scholar
  213. 213.
    Rawal, N. and B. Tandon, Epidural and intrathecal morphine in intensive care units. Intensive Care Med, 1985, 11: pp. 129–135.PubMedGoogle Scholar
  214. 214.
    De Castro, J. and L. Lecron, Peridurale Opiatanalgesie: Verschiedene Opiate – Komplikationen und Nebenwirkungen, in Peridurale Opiatanalgesie, M. Zenz, Editor, 1981, G. Fischer: Stuttgart, New York. pp. 103–107.Google Scholar
  215. 215.
    Moore, R.A., et al., Dural permeability to narcotics: in vitro determination and application to extradural administration. Br J Anaesth, 1982, 54: pp. 1117–1127.PubMedGoogle Scholar
  216. 216.
    Leicht, C.H., et al., Evaluation and comparison of epidural sufentanil citrate and morphine sulfate for analgesia after cesarean section. Anesthesiology, 1986, 65: pp. A 365.Google Scholar
  217. 217.
    Camporesi, E.M., C.H. Nielsen, and P.R. Bromage, Ventilatory CO2 sensitivity after intravenous and epidural morphine in volunteers. Anesth Analg, 1983, 62: p. 633.PubMedGoogle Scholar
  218. 218.
    Bromage, P.R., et al., Rostral spread of epidural morphine. Anesthesiology, 1982, 56: pp. 431–436.PubMedGoogle Scholar
  219. 219.
    Johnson, A., et al., Influence of intrathecal morphine and naloxone intervention on postoperative ventilatory regulation in elderly patients. Acta Anaethesiol Scand, 1992, 36 (5): pp. 436–444.Google Scholar
  220. 220.
    McCaughey, W. and I.L. Graham, The respiratory depression of epidural morphine: time course and effect of posture. Anaesthesia, 1982, 37: pp. 990–994.PubMedGoogle Scholar
  221. 221.
    Jaffe, J.H. and W.R. Martin, Opioid analgesics and antagonists, in The pharmacological Basis of Therapeutics, A.G. Gilman, et al., Editors, 1993, McGraw Hill: New York. pp. 485–531.Google Scholar
  222. 222.
    Glynn, C.I., L.E. Mather, and M.E. Cousins, Spinal narcotics and respiratory depression. Lancet, 1979, 2: p. 356.PubMedGoogle Scholar
  223. 223.
    Cohen, S.E., S. Tan, and P.F. White, Sufentanil analgesia following cesarean section: epidural versus intravenous administration. Anesthesiology, 1988, 68: pp. 129–134.PubMedGoogle Scholar
  224. 224.
    Davies, G.K., C.L. Tolhurst-Cleaver, and T.L. James, Respiratory depression after intrathecal opiates. Anaesthesia, 1980, 35: p. 1080.PubMedGoogle Scholar
  225. 225.
    Gourlay, G.K., et al., Pharmacokinetics of fentanyl in lumbar and cervical CSF following lumbar epidural and intravenous administration. Pain, 1989, 38:pp. 253–259.PubMedGoogle Scholar
  226. 226.
    Chalmer, P.C., C.M. Lang, and B.B. Greenhouse, The use of nalbuphine in association with epidural narcotics. Anesthesiol Rev, 1988, 15(2): pp. 21–27.Google Scholar
  227. 227.
    Cheng, E.Y. and J. May, Nalbuphine reversal of repiratory depression after epidural sufentanil. Crit Care Med, 1989, 17: pp. 378–379.PubMedGoogle Scholar
  228. 228.
    Bromage, P.R., Camporesi, E.M., and P.A.C. Durant, Nonrespiratory side effects of epidural morphine. Anesth Analg, 1982, 61: p. 490.PubMedGoogle Scholar
  229. 229.
    Rawal, N., K. Möllefors, and K. Axelsson, Naloxone reversal of urinary retention after epidural morphine. Lancet, 1981, 2: p. 1411.PubMedGoogle Scholar
  230. 230.
    Cousins, M.J. and L.E. Mather, Intrathecal and epidural administration of opioids. Anesthesiology, 1984, 61: pp. 276–310.PubMedGoogle Scholar
  231. 231.
    Rawal, N. and M. Wattwil, Respiratory depression after epidural morphine – an experimental and clinical study. Anesth Analg, 1982, 63: p. 8.Google Scholar
  232. 232.
    Eisenach, J.C., Epidural and spinal narcotics, in ASA Refresher Courses in Anesthesiology, P.G. Barash, Editor, 1992, Lippincott: Philadelphia. pp. 1–4.Google Scholar
  233. 233.
    Bailey, D.R. and B.E. Smith, Continuous epidural infuson of fentanyl for postoperative analgesia. Anesthesiology, 1980, 42: p. 538.Google Scholar
  234. 234.
    Gjessing, J. and P.J. Tomlin, Postoperative pain control with intrathecal morphine. Anaesthesia, 1981, 36: p. 268.PubMedGoogle Scholar
  235. 235.
    Kitahata, L.M. and J.G. Collins, Spinal action of narcotic analgesics. Anesthesiology, 1981, 54: p. 153.PubMedGoogle Scholar
  236. 236.
    Rutter, D.V., D.G. Skewes, and M. Morgan, Extradural opioids for postoperative analgesia: a double blind comparison of pethidine, fentanyl and morphine. Br J Anaesth, 1981, 53: p. 915.PubMedGoogle Scholar
  237. 237.
    Weightman, W.M., Respiratory arrest during epidural infusion of bupivacaine and fentanyl. Anaesth Int Care, 1991, 19: pp. 282–284.Google Scholar
  238. 238.
    Waldvogel, H.H., and M. Fasano, Extradural administration of lofentanyl for balanced postoperative pain. Anaesthesist, 1983, 32: pp. 256–257.Google Scholar
  239. 239.
    Herz, A. and H.J. Teschemacher, Activities and site of antinociceptive action of morphine-like analgesics. Adv Drug Res, 1971, 6: pp. 79–119.Google Scholar
  240. 240.
    Howell, S.B., Clinical application of a novel sustained-release injectable drug delivery system DepoFoam technology. Cancer J, 2001, 7: pp. 219–227.PubMedGoogle Scholar
  241. 241.
    Viscusi, E.R., et al., EREM Study Group: fourty-eight hours of postoperativ pain relief following total hip arthroplasty with a novel, extend-release epidural morphine formulation. Anesthesiology, 2005, 102: pp. 1014–1022.PubMedGoogle Scholar
  242. 242.
    Carvallo, B., E. Riley, and G. Manvelian, Phase II study of long-acting encapsulated epidural morphine for postoperative pain after cesarean section. Reg Anesth Pain Med, 2004, 29: p. A37.Google Scholar
  243. 243.
    Gambling, D.R., et al., A compararive study of patient controllled epidural analgsia (PCEA) and continuous infusion epeidural analgesia (CIEA) during labour. Can J Anaesth, 1988, 35: pp. 249–254.PubMedGoogle Scholar
  244. 244.
    Velickovic, I. and G. Leicht, Patient-controlled epidural analgesia for labor and delivery in parturient with chronic inflammatory demyelating polyneuropathy. Reg Anesth and Pain Med, 2001, 27: pp. 217–219.Google Scholar
  245. 245.
    Zenz, M., S. Piepenbrock, and M. Tryba, Epidural opiates: long-term experiences in cancer pain. Klin Wochenschr, 1985, 63: pp. 225–229.PubMedGoogle Scholar
  246. 246.
    Durant, P.A.C. and T.L. Yaksh, Epidural injections of bupivacaine, morphine, fentanyl, lofentanil, and DADL in chronically implanted rats: a pharmacologic and pathologic study. Anesthesiology, 1986, 64: pp. 43–53.PubMedGoogle Scholar
  247. 247.
    Camann, W.R., et al., A comparison of intrathecal, epidural, and intravenous sufentanil for labor analgesia. Anesthesiology, 1992, 77: pp. 884–892.PubMedGoogle Scholar
  248. 248.
    McQuay, H.J., et al., Intrathecal opioids, potency, and lipophilicity. Pain, 1989, 36: pp. 111–115.PubMedGoogle Scholar
  249. 249.
    Hansdottir, V., et al., The CSF and plasma pharmacokinetics of sufentanil after intrathecal administration. Anesthesiology, 1991, 74: pp. 264–269.PubMedGoogle Scholar
  250. 250.
    D’Angelo, R., et al., Intrathecal sufentanil compared to epidural bupivacaine for labor analgesia. Anesthesiology, 1994, 80: pp. 1209–1215.PubMedGoogle Scholar
  251. 251.
    Jones, R.D.M. and J.G. Jones, Intrathecal morphine: naloxone reverses respiratory depression but not analgesia. Br Med J, 1980, 281: pp. 645–646.PubMedGoogle Scholar
  252. 252.
    Meignier, M., et al., Continuous intrathecal opioids and bupivcaine for the management of intractable cancer pain in children. Anesth Analg, 1993, 76: p. S259.Google Scholar
  253. 253.
    Brown, D.V. and R.J. McCarthy, Epidural and spinal opioids. Curr Opinion Anaesth, 1995, 8: pp. 337–341.Google Scholar
  254. 254.
    Mok, M.S., et al. Analgesic effect of intrathecal stadol, nubain, meperidine, morphine and fentanyl, a comparative study. in VIII. World Congress of Anaesthesiologists. 1984, Manila/Philippines.Google Scholar
  255. 255.
    Kalia, P.K., et al., Epidural pentazocine for postoperative pain relief. Anesth Analg, 1983, 62: p. 949.PubMedGoogle Scholar
  256. 256.
    Malinovsky, J.M., et al., Ketamine and midazolam neurotoxicity in the rabbit. Anesthesiology, 1991, 75: pp. 91–97.PubMedGoogle Scholar
  257. 257.
    Wilcox, G.L., et al., Mutual potentiation of antinociceptive effects of morphine and clonidine on motor and sensory responses in rat spinal cord. Brain Res, 1987, 405: pp. 84–93.PubMedGoogle Scholar
  258. 258.
    Ossipov, M.H., L.J. Suarez, and T.C. Spaulding, Antinociceptive interactions between alpha2-adrenergic and opiate agonists at the spinal level of rodents. Anesth Analg, 1989, 68: pp. 194–200.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Enno Freye
    • 1
  • Joseph Victor Levy
    • 2
  1. 1.Heinrich-Heine-UniversityDüsseldorfGermany
  2. 2.University of the PacificUSA

Personalised recommendations