Systems Biology of the Endoplasmic Reticulum Stress Response

  • Marie-Elaine Caruso
  • Eric Chevet
Part of the Subcellular Biochemistry book series (SCBI, volume 43)


Endoplasmic Reticulum Stress System Biology Unfold Protein Response Serum Response Factor Endoplasmic Reticulum Stress Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aderem, A. (2005) Systems biology: its practice and challenges. Cell 121, 511–513.PubMedCrossRefGoogle Scholar
  2. Back, S.H., Schroder, M., Lee, K., Zhang, K. and Kaufman, R.J. (2005) ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods 35, 395–416.PubMedCrossRefGoogle Scholar
  3. Bar-Nun, S. (2005)The role of p97/Cdc48p in endoplasmic reticulum-associated degradation: from the immune system to yeast. Curr. Top. Microbiol. Immunol. 300, 95–125.PubMedGoogle Scholar
  4. Benner, S.A. and Sismour, A.M. (2005) Synthetic biology. Nat. Rev. Genet. 6, 533–543.PubMedCrossRefGoogle Scholar
  5. Bertolotti, A., Wang, X., Novoa, I., Jungreis, R., Schlessinger, K., Cho, J.H., West, A.B. and Ron, D. (2001) Increased sensitivity to dextran sodium sulfate colitis in IRE1beta-deficient mice. J. Clin. Invest. 107, 585–593.PubMedGoogle Scholar
  6. Bertolotti, A., Zhang, Y., Hendershot, L.M., Harding, H.P. and Ron, D. (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326–332.PubMedCrossRefGoogle Scholar
  7. Bi, M., Naczki, C., Koritzinsky, M., Fels, D., Blais, J., Hu, N., Harding, H., Novoa, I., Varia, M., Raleigh, J., Scheuner, D., Kaufman, R.J., Bell, J., Ron, D., Wouters, B.G. and Koumenis, C. (2005) ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J. 24, 3470–3481.PubMedCrossRefGoogle Scholar
  8. Blobel, G. (1995) Unidirectional and bidirectional protein traffic across membranes. Cold Spring Harb. Symp. Quant. Biol. 60, 1–10.PubMedGoogle Scholar
  9. Boeddrich, A., Gaumer, S., Haacke, A., Tzvetkov, N., Albrecht, M., Evert, B.O., Muller, E.C., Lurz, R., Breuer, P., Schugardt, N., Plassmann, S., Xu, K., Warrick, J.M., Suopanki, J., Wullner, U., Frank, R., Hartl, U.F., Bonini, N.M. and Wanker, E.E. (2006) An arginine/lysine-rich motif is crucial for VCP/p97-mediated modulation of ataxin-3 fibrillogenesis. EMBO J. 25, 1547–1558.PubMedCrossRefGoogle Scholar
  10. Bonifacino, J.S. and Weissman, A.M. (1998) Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu. Rev. Cell Dev. Biol. 14, 19–57.PubMedCrossRefGoogle Scholar
  11. Breckenridge, D.G., Stojanovic, M., Marcellus, R.C. and Shore, G.C. (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 160, 1115–1127.PubMedCrossRefGoogle Scholar
  12. Bukau, B., Weissman, J. and Horwich, A. (2006) Molecular chaperones and protein quality control. Cell 125, 443–451.PubMedCrossRefGoogle Scholar
  13. Cabral, C.M., Liu, Y. and Sifers, R.N. (2001) Dissecting glycoprotein quality control in the secretory pathway. Trends Biochem. Sci. 26, 619–624.PubMedCrossRefGoogle Scholar
  14. Calfon, M., Zeng, H., Urano, F., Till, J.H., Hubbard, S.R., Harding, H.P., Clark, S.G. and Ron, D. (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96.PubMedCrossRefGoogle Scholar
  15. Campbell, P.N. and Blobel, G. (1976) The role of organelles in the chemical modification of the primary translation products of secretory proteins. FEBS Lett. 72, 215–226.PubMedCrossRefGoogle Scholar
  16. Cheng, A., Dube, N., Gu, F. and Tremblay, M.L. (2002) Coordinated action of protein tyrosine phosphatases in insulin signal transduction. Eur. J. Biochem. 269, 1050–1059.PubMedCrossRefGoogle Scholar
  17. Chevet, E., Cameron, P.H., Pelletier, M.F., Thomas, D.Y. and Bergeron, J.J. (2001) The endoplasmic reticulum: integration of protein folding, quality control, signaling and degradation. Curr. Opin. Struct. Biol. 11, 120–124.PubMedCrossRefGoogle Scholar
  18. Chevet, E., Jakob, C.A., Thomas, D.Y. and Bergeron, J.J. (1999a). Calnexin family members as modulators of genetic diseases. Semin Cell Dev. Biol. 10, 473–480.PubMedCrossRefGoogle Scholar
  19. Chevet, E., Wong, H.N., Gerber, D., Cochet, C., Fazel, A., Cameron, P.H., Gushue, J.N., Thomas, D.Y. and Bergeron, J.J. (1999b). Phosphorylation by CK2 and MAPK enhances calnexin association with ribosomes. EMBO J. 18, 3655–3666.PubMedCrossRefGoogle Scholar
  20. Conibear, E. (2005) An E-MAP of the ER. Cell 123, 366–368.PubMedCrossRefGoogle Scholar
  21. Conn, P.M., Knollman, P.E., Brothers, S.P. and Janovick, J.A. (2006) Protein folding as post-translational regulation: evolution of a mechanism for controlled plasma membrane expression of a GPCR. Mol. Endocrinol. 12, 161–171Google Scholar
  22. Credle, J.J., Finer-Moore, J.S., Papa, F.R., Stroud, R.M. and Walter, P. (2005) On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc. Natl Acad. Sci. U.S.A. 102, 18773–18784.PubMedCrossRefGoogle Scholar
  23. Cullinan, S.B. and Diehl, J.A. (2004) PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem. 279, 20108–20117.PubMedCrossRefGoogle Scholar
  24. Cullinan, S.B. and Diehl, J.A. (2006) Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int. J. Biochem. Cell Biol. 38, 317–332.PubMedCrossRefGoogle Scholar
  25. Cullinan, S.B., Zhang, D., Hannink, M., Arvisais, E., Kaufman, R.J. and Diehl, J.A. (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23, 7198–7209.PubMedCrossRefGoogle Scholar
  26. Delom, F., Emadali, A., Cocolakis, E., Lebrun, J.J., Nantel, A. and Chevet, E. (2007) Calnexin-dependent regulation of tunicamycin-induced apoptosis in breast carcinoma MCF-7 cells. Cell Death Differ. 14(3), 586–596.PubMedCrossRefGoogle Scholar
  27. Dickson, K.M., Bergeron, J.J., Shames, I., Colby, J., Nguyen, D.T., Chevet, E., Thomas, D.Y. and Snipes, G.J. (2002) Association of calnexin with mutant peripheral myelin protein-22 ex vivo: a basis for “gain-of-function” ER diseases. Proc. Natl Acad. Sci. USA 99, 9852–9857.PubMedCrossRefGoogle Scholar
  28. Doss-Pepe, E.W., Stenroos, E.S., Johnson, W.G. and Madura, K. (2003) Ataxin-3 interactions with rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol. Cell Biol. 23, 6469–6483.PubMedCrossRefGoogle Scholar
  29. Ellgaard, L. and Helenius, A. (2003) Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 4, 181–191.PubMedCrossRefGoogle Scholar
  30. Freedman, R.B. (1989) Protein disulfide isomerase: multiple roles in the modification of nascent secretory proteins. Cell 57, 1069–1072.PubMedCrossRefGoogle Scholar
  31. Friboulet, A. and Thomas, D. (2005) Systems Biology-an interdisciplinary approach. Biosens. Bioelectron. 20, 2404–2407.PubMedCrossRefGoogle Scholar
  32. Funahashi, A. (2003) [The ERATO Systems Biology Workbench and Systems Biology Markup Language: an integrated environment and standardization for systems biology]. Tanpakushitsu Kakusan Koso 48, 810–816.PubMedGoogle Scholar
  33. Gonzalez, T.N., Sidrauski, C., Dorfler, S. and Walter, P. (1999) Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway. EMBO J. 18, 3119–3132.PubMedCrossRefGoogle Scholar
  34. Gu, F., Nguyen, D.T., Stuible, M., Dube, N., Tremblay, M.L. and Chevet, E. (2004) Protein-tyrosine phosphatase 1B potentiates IRE1 signaling during endoplasmic reticulum stress. J. Biol. Chem. 279, 49689–49693.PubMedCrossRefGoogle Scholar
  35. Hammer, G.L., Sinclair, T.R., Chapman, S.C. and van Oosterom, E. (2004) On systems thinking, systems biology, and the in silico plant. Plant Physiol. 134, 909–911.PubMedCrossRefGoogle Scholar
  36. Harding, H.P., Zeng, H., Zhang, Y., Jungries, R., Chung, P., Plesken, H., Sabatini, D.D. and Ron, D. (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol. Cell. 7, 1153–1163.PubMedCrossRefGoogle Scholar
  37. Harding, H.P., Zhang, Y. and Ron, D. (1999) Protein translation and folding are coupled by an endoplasmic- reticulum-resident kinase. Nature 397, 271–274.PubMedCrossRefGoogle Scholar
  38. Harding, H.P., Zhang, Y., Zeng, H., Novoa, I., Lu, P.D., Calfon, M., Sadri, N., Yun, C., Popko, B., Paules, R., Stojdl, D.F., Bell, J.C., Hettmann, T., Leiden, J.M. and Ron, D. (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11, 619–633.PubMedCrossRefGoogle Scholar
  39. Haze, K., Yoshida, H., Yanagi, H., Yura, T. and Mori, K. (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10, 3787–3799.PubMedGoogle Scholar
  40. Hebert, D.N., Garman, S.C. and Molinari, M. (2005) The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell. Biol. 15, 364–370.PubMedCrossRefGoogle Scholar
  41. Helenius, A. and Aebi, M. (2001) Intracellular functions of N-linked glycans. Science 291, 2364–2369.PubMedCrossRefGoogle Scholar
  42. Helenius, A. and Aebi, M. (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049.PubMedCrossRefGoogle Scholar
  43. Hendershot, L., Wei, J., Gaut, J., Melnick, J., Aviel, S. and Argon, Y. (1996) Inhibition of immunoglobulin folding and secretion by dominant negative BiP ATPase mutants. Proc. Natl Acad. Sci. USA 93, 5269–5274.PubMedCrossRefGoogle Scholar
  44. Hetz, C., Bernasconi, P., Fisher, J., Lee, A.H., Bassik, M.C., Antonsson, B., Brandt, G. S., Iwakoshi, N.N., Schinzel, A., Glimcher, L.H. and Korsmeyer, S.J. (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312, 572–576.PubMedCrossRefGoogle Scholar
  45. Hidvegi, T., Schmidt, B.Z., Hale, P. and Perlmutter, D.H. (2005) Accumulation of mutantalpha 1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NFkappaB, and BAP31 but not the unfolded protein response. J. Biol. Chem. 280, 39002–39015.PubMedCrossRefGoogle Scholar
  46. Hollien, J. and Weissman, J.S. (2006) Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 52–53.CrossRefGoogle Scholar
  47. Huang, Y., Niwa, J., Sobue, G. and Breitwieser, G.E. (2006) Calcium-sensing receptor ubiquitination and degradation mediated by the E3 ubiquitin ligase dorfin. J. Biol. Chem. 281, 11610–11617.PubMedCrossRefGoogle Scholar
  48. Iwawaki, T., Hosoda, A., Okuda, T., Kamigori, Y., Nomura-Furuwatari, C., Kimata, Y., Tsuru, A. and Kohno, K. (2001) Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat. Cell Biol. 3, 158–164.PubMedCrossRefGoogle Scholar
  49. Jakob, C.A., Chevet, E., Thomas, D.Y. and Bergeron, J.J. (2001) Lectins of the ER quality control machinery. Results Probl. Cell Differ. 33, 1–17.PubMedGoogle Scholar
  50. Jarosch, E., Lenk, U. and Sommer, T. (2003) Endoplasmic reticulum-associated protein degradation. Int. Rev. Cytol. 223, 39–81.PubMedGoogle Scholar
  51. Katayama, T., Imaizumi, K., Sato, N., Miyoshi, K., Kudo, T., Hitomi, J., Morihara, T., Yoneda, T., Gomi, F., Mori, Y., Nakano, Y., Takeda, J., Tsuda, T., Itoyama, Y., Murayama, O., Takashima, A., St George- Hyslop, P., Takeda, M. and Tohyama, M. (1999) Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat. Cell Biol. 1, 479–485.PubMedCrossRefGoogle Scholar
  52. Kebache, S., Cardin, E., Nguyen, D.T., Chevet, E. and Larose, L. (2004) Nck-1 antagonizes the endoplasmic reticulum stress-induced inhibition of translation. J. Biol. Chem. 279, 9662–9671.PubMedCrossRefGoogle Scholar
  53. Kennedy, B.P. and Ramachandran, C. (2000) Protein tyrosine phosphatase-1B in diabetes. Biochem. Pharmacol. 60, 877–883.PubMedCrossRefGoogle Scholar
  54. Kitano, H. (2002a). Computational systems biology. Nature 420, 206–210.PubMedCrossRefGoogle Scholar
  55. Kitano, H. (2002b). Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology. Curr. Genet. 41, 1–10.PubMedCrossRefGoogle Scholar
  56. Kitano, H. (2002c). Systems biology: a brief overview. Science 295, 1662–1664.PubMedCrossRefGoogle Scholar
  57. Kitano, H. (2003) [Introductions to systems biology]. Tanpakushitsu Kakusan Koso 48, 789–793.PubMedGoogle Scholar
  58. Kitano, H. (2005) International alliances for quantitative modeling in systems biology. Mol. Syst. Biol. 1, 2005 0007.CrossRefGoogle Scholar
  59. Kleizen, B. and Braakman, I. (2004) Protein folding and quality control in the endoplasmic reticulum. Curr. Opin. Cell Biol. 16, 343–349.PubMedCrossRefGoogle Scholar
  60. Kojima, E., Takeuchi, A., Haneda, M., Yagi, A., Hasegawa, T., Yamaki, K., Takeda, K., Akira, S., Shimokata, K. and Isobe, K. (2003) The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34-deficient mice. FASEB J. 17, 1573–1575.PubMedCrossRefGoogle Scholar
  61. Kokame, K., Kato, H. and Miyata, T. (2001) Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J. Biol. Chem. 276, 9199–9205.PubMedCrossRefGoogle Scholar
  62. Kukuruzinska, M.A. and Lennon, K. (1998) Protein N-glycosylation: molecular genetics and functional significance. Crit. Rev. Oral Biol. Med. 9, 415–448.PubMedCrossRefGoogle Scholar
  63. Leber, J.H., Bernales, S. and Walter, P. (2004) IRE1-independent gain control of the unfolded protein response. PLoS Biol. 2, E235.PubMedCrossRefGoogle Scholar
  64. Lee, N.K. andLee, S.Y. (2002) Modulation of life and death by the tumor necrosis factor receptor-associated factors (TRAFs). J. Biochem. Mol. Biol. 35, 61–66.PubMedGoogle Scholar
  65. Lindholm, D., Wootz, H. and Korhonen, L. (2006) ER stress and neurodegenerative diseases. Cell Death Differ. 13, 385–392.PubMedCrossRefGoogle Scholar
  66. Lingappa, V.R. and Blobel, G. (1980) Early events in the biosynthesis of secretory and membrane proteins: the signal hypothesis. Recent Prog. Horm. Res. 36, 451–475.PubMedGoogle Scholar
  67. Lyman, S.K. and Schekman, R. (1996) Polypeptide translocation machinery of the yeast endoplasmic reticulum. Experientia 52, 1042–1049.PubMedCrossRefGoogle Scholar
  68. Ma, Y., Brewer, J.W., Diehl, J.A. and Hendershot, L.M. (2002) Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J. Mol. Biol. 318, 1351–1365.PubMedCrossRefGoogle Scholar
  69. Marcu, M.G., Doyle, M., Bertolotti, A., Ron, D., Hendershot, L. and Neckers, L. (2002) Heat shock protein 90 modulates the unfolded protein response by stabilizing IRE1alpha. Mol. Cell. Biol. 22, 8506–8513.PubMedCrossRefGoogle Scholar
  70. McCracken, A.A. and Brodsky, J.L. (2005) Recognition and delivery of ERAD substrates to the proteasome and alternative paths for cell survival. Curr. Top Microbiol. Immunol. 300, 17–40.PubMedGoogle Scholar
  71. McDaniel, R. and Weiss, R. (2005) Advances in synthetic biology: on the path from prototypes to applications. Curr. Opin. Biotechnol. 16, 476–483.PubMedCrossRefGoogle Scholar
  72. Meusser, B., Hirsch, C., Jarosch, E. and Sommer, T. (2005) ERAD: the long road to destruction. Nat, Cell, Biol, 7, 766–772.CrossRefGoogle Scholar
  73. Momoi, T. (2006) Conformational diseases and ER stress-mediated cell death: apoptotic cell death and autophagic cell death. Curr. Mol. Med. 6, 111–118.PubMedCrossRefGoogle Scholar
  74. Mori, K., Ma, W., Gething, M.J. and Sambrook, J. (1993) A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 74, 743–756.PubMedCrossRefGoogle Scholar
  75. Nadanaka, S., Yoshida, H., Kano, F., Murata, M. and Mori, K. (2004) Activation of mammalian unfolded protein response is compatible with the quality control system operating in the endoplasmic reticulum. Mol. Biol. Cell. 15, 2537–2548.PubMedCrossRefGoogle Scholar
  76. Nanua, S., Sajjan, U., Keshavjee, S. and Hershenson, M.B. (2006) Absence of typical unfolded protein response in primary cultured cystic fibrosis airway epithelial cells. Biochem. Biophys. Res. Commun. 343, 135–143.PubMedCrossRefGoogle Scholar
  77. Ng, F.W., Nguyen, M., Kwan, T., Branton, P.E., Nicholson, D.W., Cromlish, J.A. and Shore, G.C. (1997) p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum. J. Cell Biol. 139, 327–338.PubMedCrossRefGoogle Scholar
  78. Nguyen, M., Breckenridge, D.G., Ducret, A. and Shore, G.C. (2000) Caspase-resistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria. Mol. Cell. Biol. 20, 6731–6740.PubMedCrossRefGoogle Scholar
  79. Nguyen, D.T., Kebache, S., Fazel, A., Wong, H.N., Jenna, S., Emadali, A., Lee, E.H., Bergeron, J.J., Kaufman, R.J., Larose, L. and Chevet, E. (2004) Nck-dependent activation of extracellular signal-regulated kinase-1 and regulation of cell survival during endoplasmic reticulum stress. Mol. Biol. Cell. 15, 4248–4260.PubMedCrossRefGoogle Scholar
  80. Niwa, M., Patil, C.K., DeRisi, J. and Walter, P. (2005) Genome-scale approaches for discovering novel nonconventional splicing substrates of the Irel nuclease. Genome Biol. 6, R3.PubMedCrossRefGoogle Scholar
  81. Niwa, M., Sidrauski, C., Kaufman, R.J. and Walter, P. (1999) A role for presenilin-1 in nuclear accumulation of Irel fragments and induction of the mammalian unfolded protein response. Cell 99, 691–702.PubMedCrossRefGoogle Scholar
  82. Novoa, I., Zeng, H., Harding, H.P. and Ron, D. (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J. Cell Biol. 153, 1011–1022.PubMedCrossRefGoogle Scholar
  83. Oda, Y., Okada, T., Yoshida, H., Kaufman, R.J., Nagata, K. and Mori, K. (2006) Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J. Cell Biol. 172, 383–393.PubMedCrossRefGoogle Scholar
  84. Palade, G.E. and Porter, K.R. (1954) Studies on the endoplasmic reticulum. I. Its identification in cells in situ. J. Exp. Med. 100, 641–656.PubMedCrossRefGoogle Scholar
  85. Paschen, W. (2003) Shutdown of translation: lethal or protective? Unfolded protein response versus apoptosis. J. Cereb. Blood Flow Metab. 23, 773–779.PubMedCrossRefGoogle Scholar
  86. Pawson, T. and Linding, R. (2005) Synthetic modular systems–reverse engineering of signal transduction. FEBS Lett. 579, 1808–1814.PubMedCrossRefGoogle Scholar
  87. Price, B.D. (1992) Signalling across the endoplasmic reticulum membrane: potential mechanisms. Cell Signal 4, 465–470.PubMedCrossRefGoogle Scholar
  88. Pryme, I.F. (1986) Compartmentation of the rough endoplasmic reticulum. Mol. Cell. Biochem. 71, 3–18.PubMedCrossRefGoogle Scholar
  89. Quenneville, N.R. and Conibear, E. (2006) Toward the systems biology of vesicle transport. Traffic 7, 761–768.PubMedCrossRefGoogle Scholar
  90. Rutkowski, D.T. and Kaufman, R.J. (2004) A trip to the ER: coping with stress. Trends Cell Biol. 14, 20–28.PubMedCrossRefGoogle Scholar
  91. Schrag, J.D., Procopio, D.O., Cygler, M., Thomas, D.Y. and Bergeron, J.J. (2003) Lectin control of protein folding and sorting in the secretory pathway. Trends Biochem. Sci. 28, 49–57.PubMedCrossRefGoogle Scholar
  92. Schroder, M. and Kaufman, R.J. (2005) ER stress and the unfolded protein response. Mutat. Res. 569, 29–63.PubMedGoogle Scholar
  93. Schuldiner, M., Collins, S.R., Thompson, N.J., Denic, V., Bhamidipati, A., Punna, T., Ihmels, J., Andrews, B., Boone, C., Greenblatt, J. F., Weissman, J.S. and Krogan, N.J. (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519.PubMedCrossRefGoogle Scholar
  94. Sekijima, Y., Wiseman, R.L., Matteson, J., Hammarstrom, P., Miller, S.R., Sawkar, A. R., Balch, W.E. and Kelly, J.W. (2005) The biological and chemical basis for tissue-selective amyloid disease. Cell 121, 73–85.PubMedCrossRefGoogle Scholar
  95. Sekine, Y., Takeda, K. and Ichijo, H. (2006) The ASK1-MAP kinase signaling in ER stress and neurodegenerative diseases. Curr. Mol. Med. 6, 87–97.PubMedCrossRefGoogle Scholar
  96. Shen, X., Ellis, R.E., Sakaki, K. and Kaufman, R.J. (2005b). Genetic interactions due to constitutive and inducible gene regulation mediated by the unfolded protein response in C. elegans. PLoS Genet. 1, e37.PubMedCrossRefGoogle Scholar
  97. Shen, J., Snapp, E.L., Lippincott-Schwartz, J. and Prywes, R. (2005a). Stable binding of ATF6 to BiP in the endoplasmic reticulum stress response. Mol. Cell Biol. 25, 921–932.PubMedCrossRefGoogle Scholar
  98. Shi, Y., Vattem, K.M., Sood, R., An, J., Liang, J., Stramm, L. and Wek, R.C. (1998) Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol. Cell Biol. 18, 7499–7509.PubMedGoogle Scholar
  99. Sidrauski, C. and Walter, P. (1997) The transmembrane kinase Irelp is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90, 1031–1039.PubMedCrossRefGoogle Scholar
  100. Sitia, R. and Braakman, I. (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426, 891–894.PubMedCrossRefGoogle Scholar
  101. Sommer, T. and Jarosch, E. (2002) BiP binding keeps ATF6 at bay. Dev. Cell 3, 1–2.PubMedCrossRefGoogle Scholar
  102. Taylor, S.C., Ferguson, A.D., Bergeron, J.J. and Thomas, D.Y. (2004) The ER protein folding sensor UDP-glucose glycoprotein-glucosyltransferase modifies substrates distant to local changes in glycoprotein conformation. Nat. Struct. Mol. Biol. 11, 128–134.PubMedCrossRefGoogle Scholar
  103. Taylor, S.C., Thibault, P., Tessier, D.C., Bergeron, J.J. and Thomas, D.Y. (2003) Glycopeptide specificity of the secretory protein folding sensor UDP-glucose glycoprotein:glucosyltransferase. EMBO Rep. 4, 405–411.PubMedCrossRefGoogle Scholar
  104. Thuerauf, D.J., Arnold, N.D., Zechner, D., Hanford, D.S., DeMartin, K.M., McDonough, P.M., Prywes, R. and Glembotski, C.C. (1998) p38 Mitogen-activated protein kinase mediates the transcriptional induction of the atrial natriuretic factor gene through a serum response element. A potential role for the transcription factor ATF6. J. Biol. Chem. 273, 20636–20643.PubMedCrossRefGoogle Scholar
  105. Thuerauf, D.J., Morrison, L. and Glembotski, C.C. (2004) Opposing roles for ATF6alpha and ATF6beta in endoplasmic reticulum stress response gene induction. J. Biol. Chem. 279, 21078–21084.PubMedCrossRefGoogle Scholar
  106. Trombetta, E.S. and Helenius, A. (1998) Lectins as chaperones in glycoprotein folding. Curr. Opin. Struct. Biol. 8, 587–592.PubMedCrossRefGoogle Scholar
  107. Trombetta, E.S. and Parodi, A.J. (2003) Quality control and protein folding in the secretory pathway. Annu. Rev. Cell Dev. Biol. 19, 649–676.PubMedCrossRefGoogle Scholar
  108. Urano, F., Bertolotti, A. and Ron, D. (2000a). IRE1 and efferent signaling from the endoplasmic reticulum. J. Cell. Sci. 113, 3697–3702.PubMedGoogle Scholar
  109. Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H.P. and Ron, D. (2000b). Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666.PubMedCrossRefGoogle Scholar
  110. Valkonen, M., Penttila, M. and Saloheimo, M. (2004) The ire1 and ptc2 genes involved in the unfolded protein response pathway in the filamentous fungus Trichoderma reesei. Mol Genet Genomics 272, 443–451.PubMedCrossRefGoogle Scholar
  111. Vitale, A. and Ceriotti, A. (2004) Protein quality control mechanisms and protein storage in the endoplasmic reticulum. A conflict of interests? Plant Physiol. 136, 3420–3426.PubMedCrossRefGoogle Scholar
  112. von Bertalanffy, L. (1968) General System Theory: Foundations, Development, Applications. (New York: George Braziller).Google Scholar
  113. Wang, X.Z. and Ron, D. (1996) Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science 272, 1347–1349.PubMedCrossRefGoogle Scholar
  114. Wang, Y., Shen, J., Arenzana, N., Tirasophon, W., Kaufman, R.J. and Prywes, R. (2000) Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. J. Biol. Chem. 275, 27013–27020.PubMedGoogle Scholar
  115. Welihinda, A.A., Tirasophon, W., Green, S.R. and Kaufman, R.J. (1998) Protein serine/threonine phosphatase Ptc2p negatively regulates the unfolded-protein response by dephosphorylating Irelp kinase. Mol. Cell Biol. 18, 1967–1977.PubMedGoogle Scholar
  116. Wu, J. and Kaufman, R.J. (2006) From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ. 13, 374–384.PubMedCrossRefGoogle Scholar
  117. Wu, J.C., Liang, Z.Q. and Qin, Z.H. (2006) Quality control system of the endoplasmic reticulum and related diseases. Acta Biochim. Biophys. Sin. (Shanghai) 38, 219–226.CrossRefGoogle Scholar
  118. Xu, C., Bailly-Maitre, B. and Reed, J.C. (2005) Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest. 115, 2656–2664.PubMedCrossRefGoogle Scholar
  119. Yasuda, Y., Kudo, T., Katayama, T., Imaizumi, K., Yatera, M., Okochi, M., Yamamori, H., Matsumoto, N., Kida, T., Fukumori, A., Okumura, M., Tohyama, M. and Takeda, M. (2002) FAD-linked presenilin-1 mutants impede translation regulation under ER stress. Biochem. Biophys. Res. Commun. 296, 313–318.PubMedCrossRefGoogle Scholar
  120. Ye, J., Rawson, R.B., Komuro, R., Chen, X., Dave, U.P., Prywes, R., Brown, M.S. and Goldstein, J.L. (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364.PubMedCrossRefGoogle Scholar
  121. Ye, Y., Shibata, Y., Yun, C., Ron, D. and Rapoport, T.A. (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841–847.PubMedCrossRefGoogle Scholar
  122. Yoshida, Y. (2003) A novel role for N-glycans in the ERAD system. J. Biochem. (Tokyo) 134, 183–190.Google Scholar
  123. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. and Mori, K. (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891.PubMedCrossRefGoogle Scholar
  124. Zeng, L., Lu, M., Mori, K., Luo, S., Lee, A.S., Zhu, Y. and Shyy, J.Y. (2004) ATF6 modulates SREBP2-mediated lipogenesis. EMBO J. 23, 950–958.PubMedCrossRefGoogle Scholar
  125. Zhang, K. and Kaufman, R.J. (2006a). Protein folding in the endoplasmic reticulum and the unfolded protein response. Handb. Exp. Pharmacol. 172, 69–91.PubMedCrossRefGoogle Scholar
  126. Zhang, K. and Kaufman, R.J. (2006b). The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 66, S102-S109.PubMedCrossRefGoogle Scholar
  127. Zhu, C., Johansen, F.E. and Prywes, R. (1997) Interaction of ATF6 and serum response factor. Mol. Cell Biol. 17, 4957–4966.PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Marie-Elaine Caruso
    • 1
    • 2
  • Eric Chevet
    • 3
  1. 1.Team Avenir, INSERM U889BordeauxFrance
  2. 2.Université Bordeaux 2BordeauxFrance
  3. 3.McGill UniversityMontrealCanada

Personalised recommendations