Skip to main content

Systems Biology and the Reconstruction of the Cell: From Molecular Components to Integral Function

  • Chapter
Subcellular Proteomics

Part of the book series: Subcellular Biochemistry ((SCBI,volume 43))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acerenza, L., Sauro, H.M. and Kacser, H. (1989) Control analysis of time-dependent metabolic systems. J. Theor. Biol. 137, 423–444.

    PubMed  CAS  Google Scholar 

  • Affourtit, C. and Brand, M.D. (2006) Stronger control of ATP/ADP by proton leak in pancreatic beta-cells than skeletal muscle mitochondria. Biochem. J. 393, 151–159.

    Article  PubMed  CAS  Google Scholar 

  • Ainscow, E.K. and Brand, M.D. (1995) Top-down control analysis of systems with more than one common intermediate. Eur. J. Biochem. 231, 579–586.

    Article  PubMed  CAS  Google Scholar 

  • Ainscow, E.K. and Brand, M.D. (1999a) Internal regulation of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. Eur. J. Biochem. 266, 737–749.

    Article  PubMed  CAS  Google Scholar 

  • Ainscow, E.K. and Brand, M.D. (1999b) Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. Eur. J. Biochem. 263, 671–685.

    Article  PubMed  CAS  Google Scholar 

  • Alberghina, L. and Westerhoff, H.V. eds. (2005) Systems Biology, Definitions and Perspectives (Topics in Current Genetics), (Berlin: Springer-Verlag and Heidelberg: GmbH & Co. K.).

    Google Scholar 

  • Albert, R. and Barabasi, A.L. (2002) Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97.

    Article  Google Scholar 

  • Albert, M.A., Haanstra, J.R, Hannaert, V., Van Roy, J., Opperdoes, F.R., Bakker, B.M. and Michels, P.A. (2005) Experimental and in silico analyses of glycolytic flux control in bloodstream form Trypanosoma brucei. J. Biol. Chem. 280, 28306–28315.

    Article  CAS  Google Scholar 

  • Allen, T.E. and Palsson, B.O. (2003) Sequence-based analysis of metabolic demands for protein synthesis in prokaryotes. J. Theor. Biol. 220, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Bakker, B.M., Michels, P.A.M., Opperdoes, F.R. and Westerhoff, H.V. (1997) Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. J. Biol. Chem. 272, 3207–3215.

    Article  PubMed  CAS  Google Scholar 

  • Bakker, B.M., Walsh, M.C., ter Kuile, B.H., Mensonides, F.I., Michels, P.A., Opperdoes, F.R. and Westerhoff, H.V. (1999) Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei. Proc. Natl Acad. Sci. U.S.A. 96, 10098–10103.

    Article  PubMed  CAS  Google Scholar 

  • Brand, M.D. (1996) Top down metabolic control analysis. J. Theor. Biol. 182, 351–360.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, S. (1999) Theoretical biology in the third millennium. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 354, 1963–1965.

    Article  PubMed  CAS  Google Scholar 

  • Brown, G.C. and Kholodenko, B.N. (1999) Spatial gradients of cellular phospho-proteins. FEBS Lett. 457, 452–454.

    Article  PubMed  CAS  Google Scholar 

  • Bruggeman, F.J., Bakker, B.M., Hornberg, J.J. and Westerhoff, H.V. (2005a) Introduction to computational models of biochemical reaction networks. In: Computational Systems Biology. A. Kriete and R. Eils, eds. (London, UK: Elsevier Academic Press), pp. 127–148.

    Google Scholar 

  • Bruggeman, F.J., Boogerd, F.C. and Westerhoff, H.V. (2005b) The multifarious short-term regulation of ammonium assimilation of Escherichia coli, dissection using an in silico replica. Febs. J. 272, 1965–1985.

    Article  PubMed  CAS  Google Scholar 

  • Bruggeman, F.J., Westerhoff, H.V., Hoek, J.B. and Kholodenko, B.N. (2002) Modular response analysis of cellular regulatory networks. J. Theor. Biol. 218, 507–520.

    PubMed  CAS  Google Scholar 

  • Cho, J.H., Lee, Y.K. and Chae, C.B. (2001) The modulation of the biological activities of mitochondrial histone Abf2p by yeast PKA and its possible role in the regulation of mitochondrial DNA content during glucose repression. Biochim. Biophys. Acta 1522, 175–186.

    PubMed  CAS  Google Scholar 

  • Ciapaite, J., Van Eikenhorst, G., Bakker, S.J.L., Diamant, M., Heine, R.J., Wagner, M.J., Westerhoff, H.V. and Krab, K. (2005) Modular kinetic analysis of the adenine nucleotide translocator-mediated effects of palmitoyl-CoA on the oxidative phosphorylation in isolated rat liver mitochondria. Diabetes 54, 944–951.

    Article  PubMed  CAS  Google Scholar 

  • Clauset, A., Newman, M.E. and Moore, C. (2004) Finding community structure in very large networks. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 70, 066111.

    PubMed  Google Scholar 

  • Cleland, W.W. (1963a). The kinetics of enzyme-catalyzed reactions with two ormore substrates or products. I. Nomenclature and rate equations. Biochim. Biophys. Acta 67, 104–137.

    Article  PubMed  CAS  Google Scholar 

  • Cleland, W.W. (1963b). The kinetics of enzyme-catalyzed reactions with two ormore substrates or products. II. Inhibition: nomenclature and theory. Biochim. Biophys. Acta 67, 173–187.

    Article  PubMed  CAS  Google Scholar 

  • Cleland, W.W. (1963c). The kinetics of enzyme-catalyzed reactions with two ormore substrates or products. III. Prediction of initial velocity and inhibition patterns by inspection. Biochim. Biophys. Acta 67, 188–196.

    Article  PubMed  CAS  Google Scholar 

  • Cronwright, G.R., Rohwer, J.M. and Prior, B.A. (2002) Metabolic Control Analysis of Glycerol Synthesis in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 68, 4448–4456.

    Article  PubMed  CAS  Google Scholar 

  • Daran-Lapujade, P., Rossell, S.L., Van Gulik, W., Luttik, M.A.H., De Groot, M., Slijper, M., Heck, A.J.R., Daran, J.M., De Winde, J.H., Westerhoff, H.V. et al. (2006) Manuscript in preparation.

    Google Scholar 

  • Davies, S.E. and Brindle, K.M. (1992) Effects of overexpression of phosphofructokinase on glycolysis in the yeast Saccharomyces cerevisiae. Biochemistry 31, 4729–4735.

    Article  PubMed  CAS  Google Scholar 

  • Dekel, E., Mangan, S. and Alon, U. (2005) Environmental selection of the feed-forward loop circuit in gene-regulation networks. Phys. Biol. 2, 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Delgado, J. and Liao, J.C. (1995) Control of metabolic pathways by time-scale separation. Biosystems 36, 55–70.

    Article  PubMed  CAS  Google Scholar 

  • Demin, O.V., Gorianin, I.I., Kholodenko, B.N. and Westerhoff, H.V. (2001) Kinetic modeling of energy metabolism and generation of active forms of oxygen in hepatocyte mitochondria. Mol. Biol. (Mosk.) 35, 1095–1104.

    CAS  Google Scholar 

  • Demin, O.V., Westerhoff, H.V. and Kholodenko, B.N. (1998) Mathematical modelling of superoxide generation with the bcl complex of mitochondria. Biochemistry (Mosc.) 63, 634–649.

    CAS  Google Scholar 

  • Easterby, J.S. (1990) Integration of temporal analysis and control analysis of metabolic systems. Biochem. J. 269, 255–259.

    PubMed  CAS  Google Scholar 

  • Edwards, J.S., Covert, M. and Palsson, B. (2002) Metabolic modelling of microbes: the flux-balance approach. Environ. Microbiol. 4, 133–140.

    Article  PubMed  Google Scholar 

  • Famili, I. and Palsson, B.O. (2003) The convex basis of the left null space of the stoichiometric matrix leads to the definition of metabolically meaningful pools. Biophys. J. 85, 16–26.

    Article  PubMed  CAS  Google Scholar 

  • Fell, D.A. (1997) Understanding the Control of Metabolism. First edn. (London and Miami: Portland Press).

    Google Scholar 

  • Fell, D.A. and Sauro, H.M. (1985) Metabolic control and its analysis. Additional relationships between elasticities and control coefficients. Eur. J. Biochem. 148, 555–561.

    Article  PubMed  CAS  Google Scholar 

  • Fell, D.A. and Sauro, H.M. (1990) Metabolic control analysis. The effects of high enzyme concentrations. Eur. J. Biochem. 192, 183–187.

    Article  PubMed  CAS  Google Scholar 

  • Fell, D.A. and Thomas, S. (1995) Physiological control of metabolic flux: the requirement for multisite modulation. Biochem. J. 311, 35–39.

    PubMed  CAS  Google Scholar 

  • Fell, D.A. and Wagner, A. (2000) The small world of metabolism. Nat. Biotechnol. 18, 1121–1122.

    Article  PubMed  CAS  Google Scholar 

  • Flint, H.J., Porteous, D.J. and Kacser, H. (1980) Control of the flux in the arginine pathway of Neurospora crassa. The flux from citrulline to arginine. Biochem. J. 190, 1–15.

    PubMed  CAS  Google Scholar 

  • Flint, H.J., Tateson, R.W., Barthelmess, I.B., Porteous, D.J., Donachie, W.D. and Kacser, H. (1981) Control of the flux in the arginine pathway of Neurospora crassa. Modulations of enzyme activity and concentration. Biochem. J. 200, 231–246.

    PubMed  CAS  Google Scholar 

  • Groen, A.K., Wanders, R.J., Westerhoff, H.V., van der Meer, R. and Tager, J.M. (1982) Quantification of the contribution of various steps to the control of mitochondrial respiration. J. Biol. Chem. 257, 2754–2757.

    PubMed  CAS  Google Scholar 

  • Heinrich, R. and Rapoport, T.A. (1974) A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 42, 89–95.

    Article  PubMed  CAS  Google Scholar 

  • Heinrich, R. and Reder, C. (1991) Metabolic control analysis of relaxation processes. J. Theor. Biol. 151, 57–61.

    Article  Google Scholar 

  • Heinrich, R. and Schuster, S. (1996) The Regulation of Cellular Systems. First edn. (New York: Chapman & Hall).

    Google Scholar 

  • Hess, E.L. (1970) Origins of molecular biology. Science 168, 664–669.

    Article  PubMed  CAS  Google Scholar 

  • Hoefnagel, M.H.N., Starrenburg, M.J.C., Martens, D.E., Hugenholtz, J., Kleerebezem, M., Van Swam, I.I., Bongers, R., Westerhoff, H.V. and Snoep, J.L. (2002) Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148, 1003–1013.

    PubMed  CAS  Google Scholar 

  • Hofmeyr, J.H. (1995) Metabolic regulation, a control analytic perspective. J. Bioenerg. Biomembr. 27, 479–490.

    Article  PubMed  CAS  Google Scholar 

  • Hofmeyr, J.H., Cornish-Bowden, A. and Rohwer, J.M. (1993) Taking enzyme kinetics out of control; putting control into regulation. Eur. J. Biochem. 212, 833–837.

    Article  PubMed  CAS  Google Scholar 

  • Hofmeyr, J.H., Kacser, H. and van der Merwe, K.J. (1986) Metabolic control analysis of moiety-conserved cycles. Eur. J. Biochem. 155, 631–641.

    Article  PubMed  CAS  Google Scholar 

  • Hofmeyr, J.H. and Westerhoff, H.V. (2001) Building the cellular puzzle: control in multi-level reaction networks. J. Theor. Biol. 208, 261–285.

    Article  PubMed  CAS  Google Scholar 

  • Hood, L. (2003) Systems biology: integrating technology, biology, and computation. Mech. Ageing Dev. 124, 9–16.

    Article  PubMed  Google Scholar 

  • Hornberg, J.J., Bruggeman, F.J., Binder, B., Geest, C.R., de Vaate, A.J., Lankelma, J., Heinrich, R. and Westerhoff, H.V. (2005) Principles behind the multifarious control of signal transduction. ERK phosphorylation and kinase/phosphatase control. FEBS J. 272, 244–258.

    Article  PubMed  CAS  Google Scholar 

  • Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., Arkin, A.P., Bornstein, B.J., Bray, D. and Cornish-Bowden, A. et al. (2003) The Systems Biology Markup Language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531.

    Article  PubMed  CAS  Google Scholar 

  • Ideker, T., Galitski, T. and Hood, L. (2001a) A new approach to decoding life: systems biology. Annu. Rev. Genomics. Hum. Genet. 2, 343–372.

    Article  PubMed  CAS  Google Scholar 

  • Ideker, T., Thorsson, V., Ranish, J.A., Christmas, R., Buhler, J., Eng, J.K., Bumgarner, R., Goodlett, D.R., Aebersold, R. and Hood, L. (2001b) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934.

    Article  PubMed  CAS  Google Scholar 

  • Imielinski, M., Belta, C., Rubin, H. and Halasz, A. (2006) Systematic analysis of conservation relations in Escherichia coli genome-scale metabolic network reveals novel growth media. Biophys. J. 90, 2659–2672.

    Article  PubMed  CAS  Google Scholar 

  • Ingalls, B. (2004) Autonomously oscillating biochemical systems: parametric sensitivity of extrema and period. Syst. Biol. 1, 62–70.

    Article  CAS  Google Scholar 

  • Ingalls, B.P. and Sauro, H.M. (2003) Sensitivity analysis of stoichiometric networks: an extension of metabolic control analysis to non-steady state trajectories. J. Theor. Biol. 222, 23–36.

    Article  PubMed  Google Scholar 

  • Itzkovitz, S., Milo, R., Kashtan, N., Ziv, G. and Alon, U. (2003) Subgraphs in random networks. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 68, 026127.

    PubMed  CAS  Google Scholar 

  • Jensen, P.R., Van Der Weijden, C.C., Jensen, L.B., Westerhoff, H.V. and Snoep, J.L. (1999) Extensive regulation compromises the extent to which DNA gyrase controls DNA supercoiling and growth rate of Escherichia coli. Eur. J. Biochem. 266, 865–877.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, H., Mason, S.P., Barabasi, A.L. and Oltvai, Z.N. (2001) Lethality and centrality in protein networks. Nature 411, 41–42.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N. and Barabasi, A.L. (2000) The large-scale organization of metabolic networks. Nature 407, 651–654.

    Article  PubMed  CAS  Google Scholar 

  • Kacser, H. and Burns, J.A. (1973) The control of flux. Symp. Soc. Exp. Biol. 27, 65–104.

    PubMed  CAS  Google Scholar 

  • Kacser, H., Sauro, H.M. and Acerenza, L. (1990) Enzyme-enzyme interactions and control analysis. 1. The case of non-additivity: monomer-oligomer associations. Eur. J. Biochem. 187, 481–491.

    Article  PubMed  CAS  Google Scholar 

  • Kahn, D. and Westerhoff, H.V. (1991) Control theory of regulatory cascades. J. Theor. Biol. 153, 255–285.

    Article  PubMed  CAS  Google Scholar 

  • Kahn, D. and Westerhoff, H.V. (1993) Regulation and homeostasis in metabolic control theory: interplay between fluctuations of variables and parameter changes. In: Modern Trends in BioThermoKinetics. S. Schuster, M. Rigoulet, R. Ouhabi, J.P. Mazat, ed. (New York: Plenum Press), pp. 199–204.

    Google Scholar 

  • Kalir, S., Mangan, S. and Alon, U. (2005) A coherent feed-forward loop with a SUM input function prolongs flagella expression in Escherichia coli. Mol. Syst. Biol. 1, 0006.

    Article  PubMed  CAS  Google Scholar 

  • Kashtan, N., Itzkovitz, S., Milo, R. and Alon, U. (2004) Topological generalizations of network motifs. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 70, 031909.

    PubMed  CAS  Google Scholar 

  • Kholodenko, B.N., Cascante, M. and Westerhoff, H.V. (1994a) Control theory of metabolic channelling. Mol. Cell. Biochem. 133–134, 313–331.

    Article  PubMed  Google Scholar 

  • Kholodenko, B.N., Demin, O.V. and Westerhoff, H.V. (1996) The metabolic control theory of biochemical oscillating systems. 1. Definitions of the quantitative characteristics and their simplest properties. Biochemistry Mosc. 61, 423–434.

    Google Scholar 

  • Kholodenko, B.N., Demin, O.V. and Westerhoff, H.V. (1997a) Control analysis of periodic phenomena in biological systems. J. Phys. Chem. B 101, 2070–2081.

    Article  CAS  Google Scholar 

  • Kholodenko, B.N., Demin, O.V., Moehren, G. and Hoek, J.B. (1999) Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. 274, 30169–30181.

    Article  PubMed  CAS  Google Scholar 

  • Kholodenko, B.N., Hoek, J.B., Westerhoff, H.V. and Brown, G.C. (1997b) Quantification of information transfer via cellular signal transduction pathways. FEBS Lett. 414, 430–434.

    Article  PubMed  CAS  Google Scholar 

  • Kholodenko, B.N., Molenaar, D., Schuster, S., Heinrich, R. and Westerhoff, H.V. (1995a) Defining control coefficients in non-ideal metabolic pathways. Biophys. Chem. 56, 215–226.

    Article  PubMed  CAS  Google Scholar 

  • Kholodenko, B.N., Sauro, H.M. and Westerhoff, H.V. (1994b) Control by enzymes, coenzymes and conserved moieties. A generalisation of the connectivity theorem of metabolic control analysis. Eur. J. Biochem. 225, 179–186.

    Article  PubMed  CAS  Google Scholar 

  • Kholodenko, B.N., Sauro, H.M., Westerhoff, H.V. and Cascante, M. (1995b) Coenzyme cycles and metabolic control analysis: the determination of the elasticity coefficients from the generalised connectivity theorem. Biochem. Mol. Biol. Int. 35, 615–625.

    PubMed  CAS  Google Scholar 

  • Kholodenko, B.N., Schuster, S., Garcia, J., Westerhoff, H.V. and Cascante, M. (1998) Control analysis of metabolic systems involving quasi-equilibrium reactions. Biochim. Biophys. Acta 1379, 337–352.

    PubMed  CAS  Google Scholar 

  • Kholodenko, B.N. and Westerhoff, H.V. (1994) Control theory of one enzyme. Biochim. Biophys. Acta 1208, 294–305.

    PubMed  Google Scholar 

  • Kitano, H. (2002) Systems biology: a brief overview. Science 295, 1662–1664.

    Article  PubMed  CAS  Google Scholar 

  • Klonowski, W. (1983) Simplifying principles for chemical and enzyme reaction kinetics. Biophys. Chem. 18, 73–87.

    Article  PubMed  CAS  Google Scholar 

  • Koster, J.G., Destrée, O.H.J. and Westerhoff, H.V. (1988) Kinetics of histone gene expression during early development of Xenopus laevis. J. Theor. Biol. 135, 139–167.

    Article  PubMed  CAS  Google Scholar 

  • Krab, K. (1995) Kinetic and regulatory aspects of the function of the alternative oxidase in plant respiration. J. Bioenerg. Biomembr. 27, 387–396.

    Article  PubMed  CAS  Google Scholar 

  • Krab, K., Wagner, M.J., Wagner, A.M. and Moller, I.M. (2000) Identification of the site where the electron transfer chain of plant mitochondria is stimulated by electrostatic charge screening. Eur. J. Biochem. 267, 869–876.

    Article  PubMed  CAS  Google Scholar 

  • Krauss, S. and Brand, M.D. (2000) Quantitation of signal transduction. FASEB J. 14, 2581–2588.

    Article  PubMed  CAS  Google Scholar 

  • Kriete, A. and Eils, R. eds. (2005) Computational Systems Biology. (London, UK: Elsevier Academic press).

    Google Scholar 

  • Leao-Helder, A.N., Krikken, A.M., Van der Klei, I.J., Kiel, J.A. and Veenhuis, M. (2003) Transcriptional down-regulation of peroxisome numbers affects selective peroxisome degradation in Hansenula polymorpha. J. Biol. Chem. 278, 40749–40756.

    Article  PubMed  CAS  Google Scholar 

  • Mahadevan, R. and Schilling, C.H. (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 5, 264–276.

    Article  PubMed  CAS  Google Scholar 

  • Mangan, S. and Alon, U. (2003) Structure and function of the feed-forward loop network motif. Proc. Natl Acad. Sci. U.S.A. 100, 11980–11985.

    Article  PubMed  CAS  Google Scholar 

  • Mangan, S., Itzkovitz, S., Zaslaver, A. and Alon, U. (2006) The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. J. Mol. Biol. 356, 1073–1081.

    Article  PubMed  CAS  Google Scholar 

  • Mangan, S., Zaslaver, A. and Alon, U. (2003) The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J. Mol. Biol. 334, 197–204.

    Article  PubMed  CAS  Google Scholar 

  • Martins, A.M., Mendes, P., Cordeiro, C. and Freire, A.P. (2001) In situ kinetic analysis of glyoxalase I and glyoxalase II in Saccharomyces cerevisiae. Eur. J. Biochem. 268, 3930–3936.

    Article  PubMed  CAS  Google Scholar 

  • Melendezhevia, E., Torres, N.V., Sicilia, J. and Kacser, H. (1990) Control analysis of transition times in metabolic systems. Biochem. J. 265, 195–202.

    CAS  Google Scholar 

  • Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. and Alon, U. (2002) Network motifs: simple building blocks of complex networks. Science 298, 824–827.

    Article  PubMed  CAS  Google Scholar 

  • Moraes, C.T. (2001) What regulates mitochondrial DNA copy number in animal cells? Trends Genet. 17, 199–205.

    Article  PubMed  CAS  Google Scholar 

  • Newman, M.E. (2006) From the Cover: modularity and community structure in networks. Proc. Natl Acad. Sci. U.S.A. 103, 8577–8582.

    Article  PubMed  CAS  Google Scholar 

  • Newman, M.E.J. (2003) The structure and function of complex networks. SIAM Rev. 45, 167–256.

    Article  Google Scholar 

  • Nikolaev, E.V., Burgard, A.P. and Maranas, C.D. (2005) Elucidation and structural analysis of conserved pools for genome-scale metabolic reconstructions. Biophys. J. 88, 37–49.

    Article  PubMed  CAS  Google Scholar 

  • Papin, J.A., Hunter, T., Palsson, B.O. and Subramaniam, S. (2005) Reconstruction of cellular signalling networks and analysis of their properties. Nat. Rev. Mol. Cell. Biol. 6, 99–111.

    Article  PubMed  CAS  Google Scholar 

  • Papin, J.A. and Palsson, B.O. (2004a). The JAK-STAT signaling network in the human B-cell: an extreme signaling pathway analysis. Biophys. J. 87, 37–46.

    Article  PubMed  CAS  Google Scholar 

  • Papin, J.A. and Palsson, B.O. (2004b). Topological analysis of mass-balanced signaling networks: a framework to obtain network properties including crosstalk. J. Theor. Biol. 227, 283–297.

    Article  PubMed  Google Scholar 

  • Papin, J.A., Stelling, J., Price, N.D., Klamt, S., Schuster, S. and Palsson, B.O. (2004) Comparison of network-based pathway analysis methods. Trends Biotechnol. 22, 400–405.

    Article  PubMed  CAS  Google Scholar 

  • Peletier, M.A., Westerhoff, H.V. and Kholodenko, B.N. (2003) Control of spatially heterogeneous and time-varying cellular reaction networks: a new summation law. J. Theor. Biol. 225, 477–487.

    Article  PubMed  Google Scholar 

  • Pereira-Leal, J.B., Enright, A.J. and Ouzounis, C.A. (2004) Detection of functional modules from protein interaction networks. Proteins 54, 49–57.

    Article  PubMed  CAS  Google Scholar 

  • Piper, M.D., Daran-Lapujade, P., Bro, C., Regenberg, B., Knudsen, S., Nielsen, J. and Pronk, J.T. (2002) Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J. Biol. Chem. 277, 37001–37008.

    Article  PubMed  CAS  Google Scholar 

  • Price, N.D., Reed, J.L. and Palsson, B.O. (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2, 886–897.

    Article  PubMed  CAS  Google Scholar 

  • Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N. and Barabasi, A.L. (2002) Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555.

    Article  PubMed  CAS  Google Scholar 

  • Reder, C. (1988) Metabolic control theory: a structural approach. J. Theor. Biol. 135, 175–201.

    Article  PubMed  CAS  Google Scholar 

  • Reed, J.L. and Palsson, B.O. (2004) Genome-scale in silico models of E.coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res. 14, 1797–1805.

    Article  PubMed  CAS  Google Scholar 

  • Rohwer, J.M., Meadow, N.D., Roseman, S., Westerhoff, H.V. and Postma, P.W. (2000) Understanding glucose transport by the bacterial phosphoenolpyruvate:glycose phosphotransferase system on the basis of kinetic measurements in vitro. J. Biol. Chem. 275, 34909–34921.

    Article  PubMed  CAS  Google Scholar 

  • Rossell, S., van der Weijden, C.C., Kruckeberg, A.L., Bakker, B.M. and Westerhoff, H.V. (2005) Hierarchical and metabolic regulation of glucose influx in starved Saccharomyces cerevisiae. FEMS Yeast Res. 5, 611–619.

    Article  PubMed  CAS  Google Scholar 

  • Rossell, S., van der Weijden, C.C., Lindenbergh, A., van Tuijl, A., Francke, C., Bakker, B.M. and Westerhoff, H.V. (2006) Unraveling the complexity of flux regulation: A new method demonstrated for nutrient starvation in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. U.S.A. 103, 2166–2171.

    Article  PubMed  CAS  Google Scholar 

  • Ruijter, G.J.G., Postma, P.W. and Van Dam, K. (1991) Control of glucose metabolism by enzyme IIGlc of the phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli. J. Bacteriol. 173, 6184–6191.

    Google Scholar 

  • Sauro, H.M. (1994) Moiety-conserved cycles and metabolic control analysis: problems in sequestration and metabolic channelling. Biosystems 33, 55–67.

    Article  PubMed  CAS  Google Scholar 

  • Sauro, H.M. and Ingalls, B. (2004) Conservation analysis in biochemical networks: computational issues for software writers. Biophys. Chem. 109, 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Sauro, H.M. and Kacser, H. (1990) Enzyme-enzyme interactions and control analysis. 2. The case of non-independence: heterologous associations. Eur. J. Biochem. 187, 493–500.

    Article  PubMed  CAS  Google Scholar 

  • Sauro, H.M., Small, J.R. and Fell, D.A. (1987) Metabolic control and its analysis. Extensions to the theory and matrix method. Eur. J. Biochem. 165, 215–221.

    Article  PubMed  CAS  Google Scholar 

  • Schaaff, I., Heinisch, J. and Zimmermann, F.K. (1989) Overproduction of glycolytic enzymes in yeast. Yeast 5, 285–290.

    Article  PubMed  CAS  Google Scholar 

  • Schilling, C.H., Letscher, D. and Palsson, B.O. (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203, 229–248.

    Article  PubMed  CAS  Google Scholar 

  • Schilling, C.H., Schuster, S., Palsson, B.O. and Heinrich, R. (1999) Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol. Prog. 15, 296–303.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, K.R. and Wilhelm, T. (2000) Model reduction by extended quasi-steady-state approximation. J. Math. Biol. 40, 443–450.

    Article  PubMed  CAS  Google Scholar 

  • Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D. and Muller, G. (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 20, 370–375.

    Article  PubMed  Google Scholar 

  • Schuster, S. (1996) Control analysis in terms of generalized variables characterizing metabolic systems. J. Theor. Biol. 182, 259–268.

    Article  PubMed  CAS  Google Scholar 

  • Schuster, S., Dandekar, T. and Fell, D.A. (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17, 53–60.

    Article  PubMed  CAS  Google Scholar 

  • Schuster, S., Fell, D.A. and Dandekar, T. (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18, 326–332.

    Article  PubMed  CAS  Google Scholar 

  • Schuster, R. and Holzhutter, H.G. (1995) Use of mathematical models for predicting the metabolic effect of large-scale enzyme activity alterations. Application to enzyme deficiencies of red blood cells. Eur. J. Biochem. 229, 403–418.

    CAS  Google Scholar 

  • Schuster, S., Kahn, D. and Westerhoff, H.V. (1993) Modular analysis of the control of complex metabolic pathways. Biophys. Chem. 48, 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Schuster, R. and Schuster, S. (1991) Relationships between modal-analysis and rapid-equilibrium approximation in the modeling of biochemical networks. Syst. Anal. Model. Simul. 8, 623–633.

    Google Scholar 

  • Segel, I.H. (1993) Enzyme kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-state Enzyme Systems. (New York: John Wiley & Sons, Inc.).

    Google Scholar 

  • Segel, L.A. and Slemrod, M. (1989) The quasi-steady-state assumption - a case-study in perturbation. Siam Rev. 31, 446–477.

    Article  Google Scholar 

  • Shen-Orr, S.S., Milo, R., Mangan, S. and Alon, U. (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68.

    Article  PubMed  CAS  Google Scholar 

  • Snoep, J.L. (2005) The Silicon Cell initiative: working towards a detailed kinetic description at the cellular level. Curr. Opin. Biotechnol. 16, 336–343.

    Article  PubMed  CAS  Google Scholar 

  • Snoep, J.L., Arfman, N., Yomano, L.P., Westerhoff, H.V., Conway, T. and Ingram, L.O. (1996) Control of glycolytic flux in Zymomonas mobilis by glucose-6-phosphate dehydrogenase activity. Biotechnol. Bioeng. 51, 190–197.

    Article  PubMed  Google Scholar 

  • Snoep, J.L., Bruggeman, F., Olivier, B.G. and Westerhoff, H.V. (2006) Towards building the silicon cell: a modular approach. BioSystems 83, 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Snoep, J.L., van der Weijden, C.C., Andersen, H.W., Westerhoff, H.V. and Jensen, P.R. (2002) DNA supercoiling in Escherichia coli is under tight and subtle homeostatic control, involving gene-expression and metabolic regulation of both topoisomerase I and DNA gyrase. Eur. J. Biochem. 269, 1662–1669.

    Article  PubMed  CAS  Google Scholar 

  • Spirin, V. and Mirny, L.A. (2003) Protein complexes and functional modules in molecular networks. Proc. Natl Acad. Sci. U.S.A. 100, 12123–12128.

    Article  PubMed  CAS  Google Scholar 

  • Stent, G.S. (1968) That was the molecular biology that was. Science 160, 390–395.

    Article  PubMed  CAS  Google Scholar 

  • Stiefenhofer, M. (1998) Quasi-steady-state approximation for chemical reaction networks. J. Math. Biol. 36, 593–609.

    Article  Google Scholar 

  • Taylor, S.D., Zhang, H., Eaton, J.S., Rodeheffer, M.S., Lebedeva, M.A., O’rourke, T.W., Siede, W. and Shadel, G.S. (2005) The conserved Mec1/Rad53 nuclear checkpoint pathway regulates mitochondrial DNA copy number in Saccharomyces cerevisiae. Mol. Biol. Cell. 16, 3010–3018.

    Article  PubMed  CAS  Google Scholar 

  • ter Kuile, B.H. and Westerhoff, H.V. (2001) Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett. 500, 169–171.

    Article  PubMed  CAS  Google Scholar 

  • Teusink, B., Passarge, J., Reijenga, C.A., Esgalhado, E., van der Weijden, C.C., Schepper, M., Walsh, M.C., Bakker, B.M., van Dam, K., Westerhoff, H.V. and Snoep, J.L. (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. 267, 5313–5329.

    Article  CAS  Google Scholar 

  • van der Gugten, A.A. and Westerhoff, H.V. (1997) Internal regulation of a modular system: the different faces of internal control. Biosystems 44, 79–106.

    Article  PubMed  CAS  Google Scholar 

  • Watts, D.J. and Strogatz, S.H. (1998) Collective dynamics of “small-world” networks. Nature 393, 440–442.

    Article  PubMed  CAS  Google Scholar 

  • Westerhoff, H.V. and Chen, Y.D. (1984) How do enzyme activities control metabolite concentrations? An additional theorem in the theory of metabolic control. Eur. J. Biochem. 142, 425–430.

    Article  PubMed  CAS  Google Scholar 

  • Westerhoff, H.V. and Kell, D.B. (1996) What bio technologists knew all along…? J. Theor. Biol. 182, 411–420.

    Article  PubMed  CAS  Google Scholar 

  • Westerhoff, H.V., Koster, J.G., van Workum, M. and Rudd, K.E. (1989) On the control of gene expression. In: Control of Metabolic Processes. A. Cornish-Bowden, M.L. Cardenas, eds. (New York: Plenum Press), pp. 399–413, NATO ASI Series.

    Google Scholar 

  • Westerhoff, H.V. and Palsson, B.O. (2004) The evolution of molecular biology into systems biology. Nat. Biotechnol. 22, 1249–1252.

    Article  PubMed  CAS  Google Scholar 

  • Westerhoff, H.V., Plomp, P.J., Groen, A.K. and Wanders, R.J. (1987) Thermodynamics of the control of metabolism. Cell Biophys. 11, 239–267.

    PubMed  CAS  Google Scholar 

  • Westerhoff, H.V. and Van Dam, K. (1987) Thermodynamics and Control of Biological Free-energy Transduction. (Amsterdam: Elsevier Science Publishers B.V. (Biomedical Division)).

    Google Scholar 

  • Wiechert, W. (2002) An introduction to 13C metabolic flux analysis. Genet. Eng. (NY) 24, 215–238.

    CAS  Google Scholar 

  • Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R., Pinter, R.Y., Alon, U. and Margalit, H. (2004) Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc. Natl Acad. Sci. U.S.A. 101, 5934–5939.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Bruggeman, F., Rossell, S., van Eunen, K., Bouwman, J., Westerhoff, H., Bakker, B. (2007). Systems Biology and the Reconstruction of the Cell: From Molecular Components to Integral Function. In: Bertrand, E., Faupel, M. (eds) Subcellular Proteomics. Subcellular Biochemistry, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5943-8_11

Download citation

Publish with us

Policies and ethics