Tiny Structural Features and their Giant Consequences for Properties of Solids

  • Andrzej Katrusiak


The origin on an atomic scale of huge macroscopic effects of most materials can be subtle. No matter whether a property involves the formation of entire atomic and ionic assembles, supramolecular clusters or inter-phases, their understanding is invariably refined to certain minimal regions. Materials and properties applied and produced by mankind have an immense variety, and a formulation of general rules describing substances of specific types is interesting and timely. Apart from well known thermodynamic, statistical and physical laws, chemical “signposts” toward substances in new groups exhibiting required properties are also needed. The structure-property relations described here focus on hydrogen-bonded structures and their dielectric properties; they pertain to the smallest of atoms and the biological functions of macromolecules and dielectric properties of matter of current interest for technological applications. We show that the spontaneous polarisation in hydrogen-bonded crystals is related to tiny atomic displacements rather than to the largest molecular dipoles present in the structure. New dimensions of the structure-property relations are described for NH+- - -N bonded ferroelectrics and relaxors. The structure-property relations described for hydrogen-bonded crystals are applicable also to substances without hydrogen bonds in other groups


Hydrogen Bond Spontaneous Polarisation Paraelectric Phase Tricritical Point Ferroelectric Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bastie, P., Vallade, M., Vettur, C., Zeyen, C.M.E. & Meister, H. (1981). Neutron diffractometry investigation of the tricritical point of KH2PO4. J. Phys. Paris 42, 445–458.Google Scholar
  2. 2.
    Horvath, J. (1983). Lattice parameter measurements of PbHPO4 single crystals by the ration method. J. Appl. Cryst. 16, 623–628.CrossRefGoogle Scholar
  3. 3.
    Horvath, J. & Kucharczyk, D. (1981). Temperature dependence of lattice parameters of PbHPO4 and PbDPO4 single crystals. Phys. stat. solidi A 63, 687–692.CrossRefGoogle Scholar
  4. 4.
    Ichikawa, M. (1978). The O-H vs. O ⃛ O distance correlation, the geometric isotope effect in OHO bonds, and its application to symmetric bonds. Acta Cryst. B 34, 2074–2080.Google Scholar
  5. 5.
    Katrusiak, A. (1990). High-pressure X-ray diffraction study on the structure and phase transition of 1,3-cyclohexanedione crystals. Acta Cryst. B 46, 246–256.CrossRefGoogle Scholar
  6. 6.
    Katrusiak, A. (1991). Structure and phase transition of 1,3-cyclohexanedione crystals as a function of temperature. Acta Cryst. B 47, 398–404.CrossRefGoogle Scholar
  7. 7.
    Katrusiak, A. (1992). Stereochemistry and transformation of¯OH- - -O¯ hydrogen bonds. Part I. Polymorphism and phase transition of 1,3-cyclohexanedione crystals. J. Mol. Struct. 269, 329–354.CrossRefGoogle Scholar
  8. 8.
    Katrusiak, A. (1993). Geometric effects of H-atom disordering in hydrogen-bonded ferroelectrics. Phys. Rev. B 48, 2992–3002.CrossRefGoogle Scholar
  9. 9.
    Katrusiak, A. (1995). Coupling of displacive and order-disorder transformations in hydrogen-bonded ferroelectrics. Phys. Rev. B 51, 589–592.CrossRefGoogle Scholar
  10. 10.
    Katrusiak, A. (1996a) Stereochemistry and transformation of - -OH- - -O= hydrogen bonds. Part II. Evaluation of Tc in hydrogen-bonded ferroelectrics from structural data. J. Mol. Struct. 374, 177–189.CrossRefGoogle Scholar
  11. 11.
    Katrusiak, A. (1996b). Structural Origin of Tricritical Point in KDP-Type Ferroelectrics. Ferroelectrics 188, 5–10.CrossRefGoogle Scholar
  12. 12.
    Katrusiak, A. (1996c). Rigid H2O molecule model of anomalous thermal expansion of ices. Phys. Rev. Lett. 77, 4366-4369.Google Scholar
  13. 13.
    Katrusiak, A. (1998). Modelling hydrogen-bonded crystal structures beyond resolution of diffraction methods. Pol. J. Chem. 72, 449-459.Google Scholar
  14. 14.
    Katrusiak, A. (1999) Stereochemistry and transformations of NH- - -N hydrogen bonds. Part I. Structural preferences for the H-site. J. Mol. Struct. 474, 125–133.CrossRefGoogle Scholar
  15. 15.
    Katrusiak, A. & Szafrański, M. (1999) Ferroelectricity in NH- - -N Hydrogen-Bonded Crystals. Phys. Rev. Lett. 82, 576-579.CrossRefGoogle Scholar
  16. 16.
    Katrusiak, A. & Szafrański, M. (2006). Disproportionation of pyrazine in NH+... N hydrogen-bonded complexes: new materials of exceptional dielectric response. J. Am. Chem. Soc. 128, 15775–15785.CrossRefGoogle Scholar
  17. 17.
    Kobayashi, J., Uesu, Y., Mizutani, I. & Enomoto, Y. (1970). X-Ray study on the thermal expansion of ferroelectric KH2PO4. Phys. stat. solidi (a) 3, 63–69.CrossRefGoogle Scholar
  18. 18.
    Landau, L.D. (1937). On the theory of phase transitions I. Zh. Eksp. Teoret. Fiz. 7, 19–32 [in Russian]; Sov. Phys. JETP 26.Google Scholar
  19. 19.
    Landau, L.D. & Lifschitz, E.M. (1976). Statisticheskaia Fizika, Izdatielstvo Nauka, Moscow. p. 536.Google Scholar
  20. 20.
    Nelmes, R.J. (1987). Structural studies of KDP and KDP-type transitions by neutron and X-ray diffraction: 1970–1985. Ferroelectrics 71, 87–123.CrossRefGoogle Scholar
  21. 21.
    Schmidt, V.H., Western, A.B. & Baker, A.G. (1976). Tricritical point in KH2PO4. Phys. Rev. Lett. 37, 839–842.CrossRefGoogle Scholar
  22. 22.
    Slater, J.C. (1941). Theory of the transition in KH2PO4. J. Chem. Phys. 9, 16–33.CrossRefGoogle Scholar
  23. 23.
    Szafrański, M., & Katrusiak, A. (2000). Thermodynamic behaviour of bistable NH+- - -N hydrogen bonds in monosalts of 1,4-diazabicyclo[2.2.2]octane. Chem. Phys. Lett. 318, 427–432.CrossRefGoogle Scholar
  24. 24.
    Szafrański, M., Katrusiak, A. & McIntyre, G.J. (2002). Ferroelectric order of parallel bistable hydrogen bonds. Phys. Rev. Lett. 89, 215507–1–4.CrossRefGoogle Scholar
  25. 25.
    Szafrański, M., & Katrusiak, A. (2004). Short-range ferroelectric order induced by proton transfer-mediated ionicity. J. Phys. Chem. 108, 15709–15713.Google Scholar
  26. 26.
    Szafrański, M., & Katrusiak, A. (2007) – being submitted.Google Scholar
  27. 27.
    Tajima, Y., Matsuo, T. & Suga, H. (1984). Calorimetric study of phase transition in hexagonal ice doped with alkali hydroxides. J. Phys. Chem. Solids 45, 1135–1144.CrossRefGoogle Scholar
  28. 28.
    Tsoucaris, G. and Lipkowski, J. (2003). Molecular and Structural Archaeology: Cosmetic and Therapeutic Chemicals. Kluwer, Dordrecht Netherlands.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Andrzej Katrusiak

There are no affiliations available

Personalised recommendations