Skip to main content

Crystalline Amino Acids

A link between chemistry, materials science and biology

  • Conference paper
Models, Mysteries and Magic of Molecules

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gurskaya, G.V. The molecular structure of amino acids: determination by X-ray diffraction analysis, Consultants Bureau, NewYork USA (1968).

    Google Scholar 

  2. Kvick, A., Al-Karaghouli, A.R., Koetzle, T.F. Deformation electron density of α-glycylglycine at 82 K. I. The neutron diffraction study, Acta Cryst. B33 (1977) 3796–3801.

    CAS  Google Scholar 

  3. Kvick, A., Koetzle, T.F., Stevens, E.D. Deformation electron density of α-glycylglycine at 82 K. II. The X-ray diffraction study, hem. Phys. 71 (1979) 173–179.

    CAS  Google Scholar 

  4. Destro, R., Marsh, R.E., Bianchi, R. A low-temperature (23 K) study of L-alanine, J. Phys. Chem. 92 (1988) 966–973.

    CAS  Google Scholar 

  5. Destro, R., Roversi, P., Barzaghi, M., Marsh, R.E. Experimental charge density of α-glycine at 23 K, J. Phys. Chem. 104 (2000) 1047–1054.

    CAS  Google Scholar 

  6. Bouhmaida, N., Ghermani, N.-E., Lecomte, C., Thalal, A. Modelling electrostatic potential from experimentally determined charge densities. II. Total potential, Crystallogr. 53A(5) (1997) 556–563.

    Google Scholar 

  7. Jelsch, C., Pichon-Pesme, V., Lecomte, C., Aubry, A. Transferability of multipole charge-density parameters: application to very high resolution oligopeptide and protein structures, Acta Crystallogr. 54D (1998) 1306–1318.

    Google Scholar 

  8. Lecomte, C., Guillot, B., Jelsch, C., Podjarny, A. Frontier example in experimental charge density research: experimental electrostatics of proteins, J. Quant. Chem. 101(5) (2005) 624–634.

    CAS  Google Scholar 

  9. Jelsch, C., Guillot, B., Lagoutte, A., Lecomte, C. Advances in protein and small-molecule charge-density refinement methods using MoPro, j Appl. Crystallogr. 38(1) (2005) 38–54.

    Google Scholar 

  10. Lecomte, C., Aubert, E., Legrand, V., Porcher, F., Pillet, S., Guillot, B., Jelsch, C. Charge density research: from inorganic and molecular materials to proteins, Z. Kristallogr. 220(4) (2005) 373–384.

    CAS  Google Scholar 

  11. Koritsanszky, T., Volkov, A., Coppens, P. Aspherical-atom scattering factors from molecular wave functions. 1. Transferability and conformation dependence of atomic electron densities of peptides within the multipole formalism, Acta Crystallogr. 58A(5) (2002) 464–472.

    Google Scholar 

  12. Volkov, A., Li, X., Koritsanszky, T., Coppens, P. Ab initio quality electrostatic atomic and molecular properties including intermolecular energies from a transferable theoretical pseudoatom databank, J. Phys. Chem. 108A(19) (2004) 4283–4300.

    Google Scholar 

  13. Flaig, R., Koritsanszky, T., Dittrich, B., Wagner, A., Luger, P. Intra and intermolecular topological properties of amino acids: a comparative study of experimental and theoretical results, J. Am. Chem. Soc. 124 (2002) 3407–3417.

    Google Scholar 

  14. Dittrich, B., Koritsanszky, T., Grosche, M., Scherer, W., Flaig, R., Wagner, A., Krane, H.G., Kessler, H., Riemer, C., Schreurs, A.M.M., Luger, P. Reproducability and transferability of topological properties; experimental charge density of the hexapeptide cyclo-(D,L-Pro) -(L-Ala) monohydrate, Acta Crystallogr. B58 (2002) 721–727.

    CAS  Google Scholar 

  15. Dittrich, B., Hubschle, C.B., Luger, P., Spackman, M.A. Introduction and validation of an invariom database for amino-acid, peptide and protein molecules, Acta Crystallogr. D62 (2006) 1325–1335.

    CAS  Google Scholar 

  16. Vinogradov, S.N. Hydrogen bonds in crystal structures of amino acids, peptides and related molecules, Int. J. Peptide Protein Res. 14(4) (1979) 281–289.

    Article  CAS  Google Scholar 

  17. Suresh, C.G., Vijayan, M. Occurrence and geometrical features of head-to-tail sequences involving amino acids in crystal structures, Int. J. Peptide Protein Res. 22(2) (1983) 129–143.

    Article  CAS  Google Scholar 

  18. Görbitz, C.H. Hydrogen-bond distances and angles in the structures of amino acids and peptides, Acta Crystallogr. B45 (1989) 390–395.

    Google Scholar 

  19. Görbitz, C.H. Structures and conformational energies of amino acids in the zwitterionic, hydrogen-bonded state, J. Mol. Struct. (Theochem) 775(1–3) (2006) 9–17.

    Google Scholar 

  20. Görbitz, C.H., Etter, M.C. Hydrogen bond connectivity patterns and hydrophobic interactions in crystal structures of small, acyclic peptides, Int. J. Peptide Protein Res. 39(2) (1992) 93–110.

    Article  Google Scholar 

  21. Görbitz, C.H. Peptide structures, ent Opinion in Solid State and Materials Science. 6(2) (2002) 109–116.

    Google Scholar 

  22. Karle, I. Folding, aggregation and molecular recognition in peptides, Acta Crystallogr. B48 (1992) 341–356.

    CAS  Google Scholar 

  23. Kistenmacher, T.J., Rand, G.A., Marsh, R.E. Refinements of the crystal structures of DL-serine and anhydrous L-serine, Acta Crystallogr. B30 (1974) 2573–2578.

    CAS  Google Scholar 

  24. Jösson, P.G., Kvick, A. Precision neutron diffraction structure determination of protein and nucleic acid components. III. The crystal and molecular structure of the amino acid α-glycine, Crystallogr. B28 (1972) 1827–1833.

    Google Scholar 

  25. Iitaka, Y. The crystal structure of γ-glycine, Acta Crystallogr. 14 (1960) 1–10.

    Google Scholar 

  26. Görbitz, C.H., Dalhus, B. Redetermination of L-leucine at 120 K, Acta Crystallogr. C52 (1996) 1754–1756.

    Google Scholar 

  27. Görbitz, C.H. An exceptionally stable peptide nanotube system with flexible pores, Acta Crystallogr. B58(5) (2002) 849–854.

    Google Scholar 

  28. Iitaka, Y. The crystal structure of β-glycine, Acta Crystallogr. 13 (1960) 35–45.

    Google Scholar 

  29. Boldyreva, E.V., Ivashevskaya, S.N., Sowa, H., Ahsbahs, H., Weber, H.-P. Effect of high pressure on the crystalline glycine: formation of a new polymorph, Dokl. Akad. Nauk. 396 (2004) 358–361.

    Google Scholar 

  30. Bamford, C.H., Brown, L., Cant, E.M., Elliott, A., Hanby, W.E. Malcolm, B.R. Structure of polyglycine, Nature. 176 (1955) 396–397.

    CAS  Google Scholar 

  31. Kajava, A.V. Dimorphism of polyglycine I: structural models for crystal modifications, Acta Crystallogr. D62 (1999) 436–442.

    Google Scholar 

  32. Crick, F.H.C., Rich, A. Structure of polyglycine II, Nature. 176 (1955) 780–781.

    CAS  Google Scholar 

  33. Meyer, K., Go, Y. Observations roentgenographiques sur des polypeptides inferieurs et superieurs, Helv. Chim. Acta. 17 (1934) 1488–1492.

    CAS  Google Scholar 

  34. Astbury, W.T., Dagliesh, C.E., Darmon, S.E., Sutherland, G.B.B.M. Studies of the structure of synthetic polypeptides, Nature. 162 (1948) 596–600.

    CAS  Google Scholar 

  35. Bamford, C.H., Elliott, A., Hanby, W.E. Syntheitic Polypeptides: Preparation, Structure, and Properties, Academic Press, N.Y. (1956).

    Google Scholar 

  36. Frazer, R.D.B., MacRae, T.P. Conformation in Fibrous Proteins and Related Synthetic Polypeptides, Academic Press, N.Y. (1973).

    Google Scholar 

  37. Kajava, A.V. Proteins with repeated sequence – structural prediction and modeling, J. Struct. Biol. 134 (2001) 132–144.

    CAS  Google Scholar 

  38. MacPhee, C.E., Woolfson, D.N. Engineered and designed peptide-based fibrous biomaterials, Current Opinion in Solid State and Materials Science 8(2) (2004) 141–149.

    CAS  Google Scholar 

  39. Zanuy, D., Nusinov, R., Aleman, C. From peptide-based material science to protein fibrils: discipline convergence in nanobiology, Phys. Biology 3. (2006) S80–S90.

    CAS  Google Scholar 

  40. Görbitz, C.H. The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer’s β-amyloid polypeptide, ChemComm. 22 (2006) 2332–2334.

    Google Scholar 

  41. Maji, S.K., Haldar, D., Drew, M.G.B., Banerjee, A., Das, A.K., Banerjee, A. Self-assembly of β-turn forming synthetic tripeptides into supramolecular β-sheets and amyloid-like fibrils in the solid state, Tetrahedron. 60(14) (2004) 3251–3259.

    CAS  Google Scholar 

  42. Das, A.K., Banerjee, A., Drew, M.G.B., Haldar, D., Banerjee, A. Stepwise self-assembly of a tripeptide from molecular dimers to supramolecular β-sheets in crystals and amyloid-like fibrils in the solid state, Supramolecular Chemistry. 16(5) (2004) 331–335.

    CAS  Google Scholar 

  43. Dutt, A., Drew, M.G.B., Pramanik, A. β-Sheet mediated self-assembly of dipeptides of ω-amino acids and remarkable fibrillation in the solid state, Organic Biomol. Chem. 3(12) (2005) 2250–2254.

    CAS  Google Scholar 

  44. Drebushchak, T.N., Kolesnik, E.N., Boldyreva, E.V. Variable temperature (100–295 K) single-crystal X-ray diffraction study of the α-polymorph of glycylglycine and a glycylglycine hydrate, Z. Kristallogr. 221 (2006) 128–138.

    CAS  Google Scholar 

  45. Ray, S., Drew, M.G.B., Das, A.K., Banerjee, A. Supramolecular β-sheet and nanofibril formation by self-assembling tripeptides containing an N-terminally located γ-aminobutyric acid residue, Supramolecular Chemistry. 18(5) (2006) 455–464.

    CAS  Google Scholar 

  46. Rapaport, H., Kuzmenko, I., Howes, P.B., Kjaer, K., Als-Nielsen, J., Leiserowitz, L., Lahav, M. Structural characterization of valinomycin and nonactin at the air-solution interface by grazing incidence X-ray diffraction, J. Am. Chem. Soc., 19 (1997) 11211–11216.

    Google Scholar 

  47. Rapaport, H., Kuzmenko, I., Kjaer, K., Als-Nielsen, J., Weissbuch, I., Lahav, M., Leiserowitz, L. Crystalline architectures at the air-liquid interface: from nucleation to engineering, Synchrotron Radiation News. 12 (1999) 25–33.

    Google Scholar 

  48. Rapaport, H., Kim, H.S., Kjaer, K., Howes, P.B., Cohen, S., Als-Nielsen, J., Ghadiri, M.R., Leiserowitz, L., Lahav, M. Crystalline cyclic peptide nanotubes at interfaces, J. Am. Chem. Soc. 121 (1999) 1186–1191.

    CAS  Google Scholar 

  49. Rapaport, H., Kuzmenko, I., Berfeld, M., Edgar, R., Popovits-Biro, R., Kjaer, K., Als-Nielsen, J., Weissbuch, I., Leiserowitz L., Lahav M. From nucleation to engineering of crystalline architectures at air-liquid interfaces, J. Phys. Chem. B. 104 (2000) 1399–1428.

    CAS  Google Scholar 

  50. Rapaport, H., Kjaer, K., Jensen, T.R., Leiserowitz, L., Tirrell D.A. Two-dimensional order in β-sheet peptide monolayers, J. Am. Chem. Soc. 122 (2000) 12523–12529.

    Google Scholar 

  51. Kuzmenko, I., Rapaport, H., Kjaer, K., Als-Nielsen, J., Weissbuch, I., Lahav, M., Leiserowitz, L. Design and characterization of crystalline thin film architectures at the air-liquid intreface: simplicity to complexity, Chem. Rev. 101 (2001) 1659–1696.

    CAS  Google Scholar 

  52. Rapaport, H., Möller, G., Knobler, C.M., Jensen, T.R., Kjaer, K., Leiserowitz, L., Tirrell, D.A. Assembly of triple-stranded β-sheet peptides at interfaces, J. Am. Chem. Soc. 124 (2002) 9342–9343.

    CAS  Google Scholar 

  53. Weissbuch, I., Berfeld, M., Bouwman, W., Kjaer, K., Als-Nielsen, J., Lahav, M., Leiserowitz, L. Separation of enantiomers and racemate formation in two-dimensional crystals at the water surface from racemic – amino acid amphiphiles: design and structure, J. Amer. Chem. Soc. 119 (1997) 933–942.

    Google Scholar 

  54. Weissbuch, I., Rubinstein, I., Weygand, M.J., Kjaer, K., Leiserowitz, L., Lahav, M. Crystalline phase separation of racemic and nonracemic zwitterionic α-amino acid amphiphiles in a phospholipid environment at the air/water interface: a grazing-incidence X-Ray diffraction study, Helv. Chim. Acta. 86 (2003) 3867–3874.

    Google Scholar 

  55. Weissbuch, I., Bolbach, G., Leiserowitz, L., Lahav, M. Chiral amplification of oligopeptides via polymerization in two-dimensional crystallites on water, Origins of Life and Evolution of the Biosphere. 34 (2004) 79–92.

    CAS  Google Scholar 

  56. Martin, S.M., Kjaer, K., Weygand, M.J., Weissbuch, I., Ward, M.D., Lahav, M. Hydrogen-bonded monolayers and interdigitated multilayers at the air-water interface,J. Phys. Chem. B. 110(29) (2006) 14292–14299.

    Google Scholar 

  57. Rapaport, H. Ordered peptide assemblies at interfaces, amolecular Chemistry. 18(5) (2006) 445–454.

    CAS  Google Scholar 

  58. Davies, R.P.W., Aggeli, A., Beevers, A.J., Boden, N., Carrick, L.M., Fishwick, C.W.G., McLeish, T.C.B., Nyrkova, I., Semenov, A.N. Self-assembling β-sheet tape forming peptides, amolecular Chemistry 18(5) (2006) 435–443.

    Google Scholar 

  59. Görbitz, C.H. Nanotube formation by hydrophobic dipeptides, Chem Europ. J. 7(23) (2001) 5153–5159.

    Google Scholar 

  60. Görbitz, C.H. βTurns, water cage formation and hydrogen bonding in the structures of L-valyl-L-phenylalanine, Crystallogr. B58 (2002) 512–518.

    Google Scholar 

  61. Görbitz, C.H. Nanotubes from hydrophobic dipeptides: Pore size regulation through side chain substitution,New J. Chem. 27(12) (2003) 1789–1793.

    Google Scholar 

  62. Görbitz, C.H. Monoclinic nanoporous crystal structures for L-valyl-L-alanine acetonitrile solvate hydrate and L-valyl-L-serine trifluoroethanol solvate, CrystEngComm. 7 (2005) 670–673.

    Google Scholar 

  63. Görbitz, C.H., Nilsen, M., Szeto, K., Tangen, L.W. Microporous organic crystals: An unusual case for L-leucyl-L-serine, ChemComm. 34 (2005) 4288–4290.

    Google Scholar 

  64. Kosic, T.J., Cline, R.E., Dlott, D.D. Picosecond coherent Raman investigation of the relaxation of low frequency vibrational modes in amino acids and peptides, Chem. Phys. 81(11) (1984) 4932–4949.

    CAS  Google Scholar 

  65. Krimm, S., Bandekar, J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins, in: Advances Protein Chemistry, Vol. 38, Ed. C.B. Anfinsen, J.T. Edsall, F.M. Richards, Academic Press, N.Y. (1986) 181–364.

    Google Scholar 

  66. Freedman, T.B., Nafie, L.A., Keiderling, T.A. Vibrational optical activity of oligopeptides, Biopolymers – Peptide Science Section 37(4) (1995) 265–279.

    CAS  Google Scholar 

  67. Dovbeshko, G., Berezhinsky, L. Low frequency vibrational spectra of some amino acids, J. Mol. Struct. 450(1–3) (1998) 121–128.

    CAS  Google Scholar 

  68. Jalkanen, K.J., Elstner, M., Suhai, S. Amino acids and small peptides as building blocks for proteins: comparative theoretical and spectroscopic studies, J. Mol. Struct. (Theochem). 675 (2004) 61–77.

    CAS  Google Scholar 

  69. Matei, A., Drichko, N., Gompf, B., Dressel, M. Far-infrared spectra of amino acids, J. Phys. 316 (2005) 61–71.

    CAS  Google Scholar 

  70. Pawlukojc, A., Leciejewicz, J., Natkaniec, I. The INS spectroscopy of amino acids: L-leucine, Spectrochim. Acta. A62 (1996) 29–32.

    Google Scholar 

  71. Pawlukojc, A., Bajdor, K., Dobrowolski, J.Cz., Leciejewicz, J., Natkaniec, I. The IINS spectroscopy of amino acids: L-isoleucine, Spectrochim. Acta. A62(6) (1997) 927–931.

    Google Scholar 

  72. Pawlukojć, A., Leciejewicz, J., Tomkinson, J., Parker, S.F. Neutron scattering, infra-red, Raman spectroscopy and ab initio study of l-threonine, Spectrochim. Acta. A62(12) (2001) 2513–2523.

    Google Scholar 

  73. Pawlukojć, A., Leciejewicz, J., Tomkinson, J., Parker, S.F. Neutron spectroscopic study of hydrogen bonding dynamics in L-serine, Spectrochim. Acta. A62(13) (2002) 2897–2904.

    Google Scholar 

  74. Pawlukojć, A., Leciejewicz, J., Ramirez-Cuesta, A.J., Nowicka-Scheibe, J. L-Cysteine: Neutron spectroscopy, Raman, IR and ab initio study, Spectrochim. Acta. A61(11–12) (2005) 2474–2481.

    Google Scholar 

  75. Barthes, M., Vik, A.F., Spire, A., Bordallo, H.N., Eckert, J. Breathers or structural instability in solid L-alanine: a new IR and inelastic neutron scattering vibrational spectroscopic study, J.Phys. Chem. A. 106 (2002) 5230–5241.

    CAS  Google Scholar 

  76. Moreno, A.J.D., Freire, P.T.C., Melo, F.E.A., Mendes Filho, J., Nogueira, M.A.M., Almeida, J.M.A., Miranda, M.A.R., Remèdios, C.M.R., Sasaki, J.M. Low-temperature Raman spectra of monohydrated L-asparagine crystals, aman Spectrosc. 35(3) (2004) 236–241.

    Google Scholar 

  77. Boldyreva, E.V., Drebushchak, T.N., Shutova, E.S. Structural distortion of the α, β, and γ-polymorphs of glycine on cooling, Z. Kristallogr. 218 (2003) 366–376.

    CAS  Google Scholar 

  78. Boldyreva, E.V., Drebushchak, V.A., Kovalevskaya, Yu.A., Paukov, I.E. Low-temperature heat capacity of αand γpolymorphs of glycine, J.Therm. Analys. Calorim. 73 (2003) 109–120.

    Google Scholar 

  79. Drebushchak, V.A., Boldyreva, E.V., Kovalevskaya, Yu.A., Paukov, I.E., Drebushchak, T.N. Low-temperature heat capacity of β-polymorph of glycine and a phase transition at 252 K, J.Therm. Analys. Calorim. 79 (2005) 65–70.

    CAS  Google Scholar 

  80. Boldyreva, E.V., Kolesnik, E. N., Drebushchak, T.N., Ahsbahs, H., Beukes, J.A., Weber, H.-P. A comparative study of the anisotropy of lattice strain induced in the crystals of L-serine by cooling down to 100 K or by increasing pressure up to 4.4 GPa, Z. Kristallogr. 220 (2005) 58–65.

    CAS  Google Scholar 

  81. Boldyreva, E.V., Kolesnik, E.N., Drebushchak, T.N., Sowa, H., Ahsbahs, H., Seryotkin, Yu.V. A comparative study of the anisotropy of lattice strain induced in the crystals of DL-serine by cooling down to 100 K, or by increasing pressure up to 8.6 GPa, Z. Kristallogr. 221 (2006) 150–161.

    Google Scholar 

  82. Drebushchak, V.A., Kovalevskaya, Yu.A., Paukov, I.E., Boldyreva, E.V. Heat capacity of D- and DL-serine in a temperature range of 5.5 to 300 K, J. Therm Analys. Calorim. (2006) on-line (doi: 10.1007/S10973-006-7668-1).

    Google Scholar 

  83. Drebushchak, V.A., Kovalevskaya, Yu.A., Paukov, I.E., Boldyreva, E.V. Heat capacity of α-glycylglycine in a temperature range of 6 to 440 K. Comparison with glycines, J.Therm. Analys. Calorim. 85(2) (2006) 485–490.

    CAS  Google Scholar 

  84. Mozhaev, V.V., Heremans, K., Frank, J., Masson, P., Balny, C. High-pressure effects on protein structure and function, Proteins. 24 (1996) 81–91.

    CAS  Google Scholar 

  85. Marchal, S., Torrent, J., Masson, P., Kornblatt, J.M., Tortora, P., Fusi, P., Lange, R., Balny, C. The powerful high pressure tool for protein conformational studies, Brazilian J. Med. Biol. Res. 38(8) (2005) 1175–1183.

    CAS  Google Scholar 

  86. Balny, C., Masson, P., Heremans, K. High pressure effects on biological macromolecules: From structural changes to alteration of cellular processes, Biochim. Biophys. Acta – Protein Struct. Molec. Enzym. 1595(1–2) (2002) 3–10.

    CAS  Google Scholar 

  87. Li, H., Akasaka, K. Conformational fluctuations of proteins revealed by variable pressure NMR, him. Biophys. Acta. 1764 (2006) 331–345.

    Google Scholar 

  88. Frauenfelder, H., Alberding, N.A., Ansari, A., Braunstein, D., Cowen, B.R., Hong, M.K., Iben, I.E.T., Johnson, J.B., Luck, S., Marden, M.C., Mourant, J.R., Ormos, P., Reinisch, L., Scholl, R., Schulte, A., Shyamsunder, E., Sorensen, L.B., Steinbach, P.J., Xie, A., Young, R.D., Yue, K.T. Proteins and pressure, Phys. Chem. 94 (1990) 1024–1037.

    CAS  Google Scholar 

  89. Panick, G., Malessa, R., Winter, R., Rapp, G., Frye, K.J., Royer, C.A. Structural characterization of the pressure-denaturated state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy, J. Mol. Biol. 275 (1998) 389–402.

    CAS  Google Scholar 

  90. Panick, G., Winter, R. Pressure-induced unfolding/refolding of ribonuclease A: static and kinetic Fourier transform infrared spectroscopy study, Biochem. 39 (2000) 1862–1869.

    CAS  Google Scholar 

  91. Vogtt, K., Winter, R. Pressure-assisted cold denaturation of hen egg white lysozyme: the influence of cosolvents probed by hydrogen exchange NMR, . J. Med. Biol. Res. 38 (2005) 1185–1193.

    CAS  Google Scholar 

  92. Daniel, I., Oger, P., Winter, R. Origins of life and biochemistry under high-pressure conditions, J. Soc. Rev. 35 (2006) 858–875.

    Google Scholar 

  93. Dzwolak, W., Jansen, R., Smirnovas, V., Loksztejn, A., Porowski, S., Winter, R. Template-controlled conformational patterns of insulin fibrillar self-assembly reflect history of solvation of the amyloid nuclei,Phys. Chem. Chem. Phys. 7 (2005) 1349–1351.

    CAS  Google Scholar 

  94. Gabke, A., Kraineva, J., Köhling, R., Winter, R. Using pressure in combination with X-ray and neutron scattering techniques for studying the structure, stability and phase behaviour of soft condensed matter and biomolecular systems, J. Phys.: Condens. Matter. 17 (2005) S3077–S3092.

    Google Scholar 

  95. Jansen, R., Dzwolak, W., Winter, R. Amyloidogenic self-assembly of insulin aggregates probed by high resolution atomic force microscopy, Phys. J. 88 (2005) 1344–1353.

    CAS  Google Scholar 

  96. Winter, R. High pressure effects in molecular bioscience, in: Chemistry at Extreme Conditions (Edited by M.R. Manaa), Elsevier B.V., 29–82 (2005).

    Google Scholar 

  97. Smirnovas, V., Winter, R., Funck, T., Dzwolack, W. Thermodynamic properties underlying the α-helix-to-β-sheet transition, aggregation and amyloidogenesis of polylysine as probed by calorimetry, densimetry and ultrasound velocimetry, J. Phys. Chem. B. 109 (2005) 19043–19045.

    CAS  Google Scholar 

  98. Grudzielanek, S., Jansen, R., Winter, R. Solvational tuning of the unfolding, aggregation and amyloidogenesis of insulin, J. Mol. Biol. 351 (2005) 879–894.

    CAS  Google Scholar 

  99. Eisenblätter, J., Winter, R. Pressure effects on the structure and phase behavior of DMPC-gramicidin lipid bilayers – a synchrotron SAXS and 2H-NMR spectroscopy study, Phys. J. 90 (2006) 956–966.

    Google Scholar 

  100. Mitra, L., Smolin, N., Ravindra, R., Royer, C., Winter, R. Pressure perturbation calorimetric studies of the solvation properties and the thermal unfolding of proteins in solution – experiments and theoretical interpretation, J. Chem. Chem. Phys. 8 (2006) 1249–1265.

    CAS  Google Scholar 

  101. Smirnovas, V., Winter, R., Funck, T., Dzwolak, W. Protein amyloidogenesis in the context of volume fluctuations: a case study on insulin, J. Chem. Chem. Phys. 7 (2006) 1046–1049.

    Google Scholar 

  102. Grudzielanek, S., Smirnovas, V., Winter, R. Solvation-assisted pressure tuning of insulin fibrillation: from novel aggregation pathways to biotechnological applications,J. Mol. Biol. 356 (2006) 497–509.

    CAS  Google Scholar 

  103. Kundrot, C.E., Richards, F.M. Crystal structure of hen egg-white lysozyme at a hydrostatic pressure of 1000 atmospheres,J. Mol. Biol. 193 (1987) 157–170.

    CAS  Google Scholar 

  104. Katrusiak, A., McMillan, P. High-Pressure Crystallography, NATO Science Series. II. Mathematics, Physics and Chemistry, Vol. 140 (2004) Kluwer, Dordrecht.

    Google Scholar 

  105. Katrusiak, A., Dauter, Z. Compressibility of lysozyme crystals by X-ray diffraction, Crystallogr. D62 (1996) 607–608.

    Google Scholar 

  106. Fourme, R., Kahn, R., Mezouar, M., Girard, E., Hoerentrup, C., Prange, T., Ascone, I. High-pressure protein crystallography (HPPX): instrumentation, methodology and results on lysozyme crystals, ynchrotron Radiation 8 (2001) 1149–1156.

    Google Scholar 

  107. Girard, E., Kahn, R., Mezouar, M., Dhaussy, A.-C., Lin, T., Johnson, J.E., Fourme, R. The first crystal structure of a macromolecular assembly under high pressure: CpMV at 330 MPa, Phys. J. 88 (2005) 3562–3571.

    CAS  Google Scholar 

  108. Colloc’h, N. Girard, E., Dhaussy, A.-C., Kahn, R., Ascone, I., Mezouar, M., Fourme, R. High-pressure macromolecular crystallography: The 140-MPa crystal structure at 2.3 Å resolution of urate oxidase, a 135-kDa tetrameric assembly, Biochim. Biophys. Acta. 1764 (2006) 391–397.

    CAS  Google Scholar 

  109. Fourme, R., Girard, E., Kahn, R., Dhaussy, A.-C., Mezouar, M., Colloc’h, N., Ascone, I. High-pressure macromolecular crystallography (HPMX): status and prospects, Biochim. Biophys. Acta. 1764 (2006) 384–390.

    Google Scholar 

  110. Moreno A.J.D., Freire P.T.C., Melo F.E.A., Araujo Silva M.A., Guedes I., Mendes Filho J. Pressure-induced phase transitions in monohydrated l-asparagine aminoacid crystals, Ed State Commun. 103(12) (1997) 655–658.

    CAS  Google Scholar 

  111. Teixeira, A.M.R., Freire, P.T.C., Moreno, A.J.D., Sasaki, J.M., Ayala, A.P., Mendes Filho, J., Melo, F.E.A. High-pressure Raman study of L-alanine crystal, Ed State Commun. 116(7) (2000) 405–409.

    CAS  Google Scholar 

  112. Sasaki, J.M., Freire, P.T.C., Moreno, A.J.D., Melo, F.E.A., Guedes, I., Mendes-Filho, J., Shu, J., Hu, J., Mao, Ho-Kwang. Single crystal X-ray diffraction in monohydrate L-asparagine under hydrostatic pressure. Science and Technology of High Pressure. Proceedings of AIRAPT-17, Ed. M.H. Manghnani, W.J. Nellis, and M.F. Nicol, University Press, Hyderabad, India (2000) 502–505.

    Google Scholar 

  113. Boldyreva, E.V., Boldyrev, V.V. Reactivity of Molecular Solids, John Wiley & Sons, Chichester, (1999).

    Google Scholar 

  114. Boldyreva, E.V., Ahsbahs, H., Weber, H.-P. A comparative study of pressure-induced lattice strain of αand γpolymorphs of glycine, Z.Kristallogr. 218 (2003) 231–236.

    CAS  Google Scholar 

  115. Boldyreva, E.V. High-pressure studies of the anisotropy of structural distortion of molecular crystals, J. Mol. Struct. 647 (2003) 159–179.

    CAS  Google Scholar 

  116. Boldyreva, E.V. Molecules in strained environment, in High-Pressure Crystallography, Ed. A. Katrusiak & P.F. McMillan, Kluwer, Dordrecht (2004) 495–512.

    Google Scholar 

  117. Boldyreva, E.V. High pressure and supramolecular systems, J. Chem. Bulletin. 7 (2004) 1315–1324.

    Google Scholar 

  118. Boldyreva, E.V. High-pressure induced structural changes in molecular crystals preserving the space group symmetry: anisotropic distortion/isosymmetric polymorphism, Cryst. Engineering 6(4) (2004) 235–254.

    Google Scholar 

  119. Boldyreva, E.V. High-pressure studies of the hydrogen bond networks in molecular crystals, J. Mol. Struct. 700(1–3) (2004) 151–155.

    CAS  Google Scholar 

  120. Boldyreva, E.V., Drebushchak, T.N., Shakhtshneider, T.P., Sowa, H., Ahsbahs, H., Goryainov, S.V., Ivashevskaya, S.N, Kolesnik, E.N., Drebushchak, V.A., Burgina, E.B. Variable-temperature and variable-pressure studies of small-molecule organic crystals, Arkivoc XII (2004) 128–155.

    Google Scholar 

  121. Boldyreva, E.V., Ivashevskaya, S.N., Sowa, H., Ahsbahs, H., Weber, H.-P. Effect of hydrostatic pressure on the γ-polymorph of glycine. 1. A polymorphic transition into a new δ -form, Z.Kristallogr. 220(1) (2005) 50–57.

    CAS  Google Scholar 

  122. Goryainov, S.V., Kolesnik, E.N., Boldyreva, E.V. A reversible pressure-induced phase transition in β-glycine at 0.76 GPa, Physica B Condensed Matter. 357(3–4) (2005) 340–347.

    Google Scholar 

  123. Kolesnik, E.N., Goryainov, S.V., Boldyreva, E.V. Different behavior of L- and DL-serine crystals at high pressures: phase transitions in L-serine and stability of the DL-serine structure, Doklady Chem. 404(2005) 61–64 (Rus.), or 169–172 (Engl.).

    Google Scholar 

  124. Goryainov, S.V., Boldyreva, E.V., Kolesnik, E.N. Raman observation a new (ζ) polymorph of glycine? Chem. Phys. Letters. 419(4–6) (2006) 496–500.

    CAS  Google Scholar 

  125. Drebushchak, T.N., Sowa, H., Seryotkin, Yu.V., Boldyreva, E.V. L-serine-III at 8.0 GPa, Acta Crystallogr. E62 (2006) o4052–o4054.

    Google Scholar 

  126. Boldyreva, E.V., Sowa, H., Seryotkin, Yu.V., Drebushchak, T.N., Ahsbhas, H., Chernyshev, V.V., Dmitriev, V.P. Pressure-induced phase transitions in crystalline L-serine studied by single-crystal and high-resolution powder X-ray diffraction,Chem. Phys. Letters. 429 (2006) 474–478.

    Google Scholar 

  127. Murli, C., Sharma, S.M., Karmakar, S., Sikka, S.K. α-Glycine under high pressures: a Raman scattering study, ica B 339 (2003) 23–30.

    Google Scholar 

  128. Dawson, A., Allan, D.R., Belmonte, S.A., Clark, S.J., David, W.I.F., McGregor, P.A., Parsons, S., Pulham, C.R., Sawyer, L. Effect of high pressure on the crystal structures of polymorphs of glycine, Crystal Growth and Design. 5(4) (2005) 1415–1427.

    CAS  Google Scholar 

  129. Moggach, S.A., Allan, D.R., Parsons, S., Sawyer, L., Warren, J.E. The effect of pressure on the crystal structure of hexagonal L-cystine, Synchrotron Radiation. 12 (2005) 598–607.

    CAS  Google Scholar 

  130. Moggach, S.A., Allan, D.R., Morrison, C.A., Parsons, S., Sawyer,L. Effect of pressure on the crystal structure of L-serine-I and the crystal structure of L-serine II at 5.4 GPa. Acta Cryst. B62 (2005) 58–68.

    Google Scholar 

  131. Moggach, S.A., Allan, D.R., Parsons, S., Sawyer, L. Effect of pressure on the crystal structure of α-glycilglycine to 4.7 GPa; application of Hirshfeld surfaces to analyse contacts on increasing pressure, Acta Crystallogr. B62 (2006) 310–320.

    CAS  Google Scholar 

  132. Moggach, S.A., Allan, D.R., Clark, S.J., Gutmann, M.J., Parsons, S., Pulham, C.R., Sawyer, L. High-pressure polymorphism in L-cysteine: the crystal structures of L-cysteine-III and L-cysteine-IV, Acta Crystallogr. B62 (2006) 296–309.

    CAS  Google Scholar 

  133. Moggach, S.A., Marshall, W.G., Parsons, S. High-pressure neutron diffraction study of L-serine-I and L-serine-II, and the structure of L-serine-III at 8.1 GPa, Acta Crystallogr. B62 (2006) 815–825.

    Google Scholar 

  134. Rieckhoff, K.E., Peticolas, W.L. Optical second harmonic generation in crystalline amino acids, Science. 147(1965) 610–611.

    CAS  Google Scholar 

  135. Misoguti, L., Bagnato, V.S., Zilio, S.C., Varela, A.T., Nunes, F.D., Melo, F.E.A., Filho, J. Mendes. Optical properties of L-alanine organic crystals, cal Materials 6(3) (1996) 147–152.

    Google Scholar 

  136. Bhat, M.N., Dharmaprakash, S.M. Effect of solvents on the growth morphology and physical characteristics of nonlinear optical γ-glycine crystals, J. Crystal Growth 242 (1–2) (2002) 245–252.

    CAS  Google Scholar 

  137. Petrosyan, H.A., Karapetyan, H.A., Antipin, M.Yu., Petrosyan, A.M. Non-linear optical crystals of L-histidine salts, J. Crystal Growth. 275 (2005) e1919–e1925.

    CAS  Google Scholar 

  138. Petrosyan, A.M., Sukiasyan, R.P., Karapetyan, H.A., Antipin, M.Yu., Apreyan, R.A. L-arginine oxalates, J. Crystal Growth. 275 (2005) e1927–e1933.

    CAS  Google Scholar 

  139. Petrosyan, A.M., Karapetyan, H.A., Sukiasyan, R.P., Aghajanyan, A.E., Morgunov, V.G., Kravchenko, E.A., Bush, A.A. Crystal structure and characterization of L-arginine chlorate and L-arginine bromate, J. Mol. Struct. (2005) 752, 144–152.

    CAS  Google Scholar 

  140. Ramesh, K, Raj, S.G., Mohan, R., Jayavel, R. Growth, structural and spectral analyses of nonlinear optical l-threonine single crystals, J Crystal Growth. 275(1–2) (2005) e1947–e1951.

    Google Scholar 

  141. Lemanov, V.V., Popov, S.N., Pankova, G.A. Piezoelectric properties of some crystalline amino acids and their complexes, Solid State Physics (Fiz. Tv. Tela). 44(10) (2002) 1840–1846.

    Google Scholar 

  142. Bernal, J.D. The crystal structure of the natural amino acids and related compounds. Z. Kristallogr. 78 (1931) 363–369.

    Google Scholar 

  143. Boldyreva, E.V., Drebushchak, V.A., Drebushchak, T.N., Paukov, I.E., Kovalevskaya, Yu.A., Shutova, E.S. Polymorphism of glycine. Thermodinamic aspects. Part I. Relative stability of the polymorphs, J. Therm. Analys. Calorim. 73 (2003) 409–418.

    Google Scholar 

  144. Boldyreva, E.V., Drebushchak, V.A., Drebushchak, T.N., Paukov, I.E., Kovalevskaya, Yu.A., Shutova, E.S. Polymorphism of glycine. Thermodinamic aspects. Part II. Polymorphic transitions, J. Therm. Analys. Calorim. 73 (2003) 419–428.

    Google Scholar 

  145. Sakai, H., Hosogai, H., Kawakita, Transformation of α-glycine to γ-glycine. J. Crystal Growth 116 (1992) 421–426.

    Google Scholar 

  146. Pyne, A., Suryanarayanan, R. Phase transitions of glycine in frozen aqueous solutions and during freeze-drying, m. Res. 18 (2001) 1448–1454.

    Google Scholar 

  147. Ferrari, E.S., Davey, R.J., Cross, W.I., Gillon, A.L., Towler, C.S. Crystallization in polymorphic systems: the solvent-mediated transformation of βto αglycine, Crystal Growth Design. 3(1) (2003) 53–60.

    CAS  Google Scholar 

  148. Harding, M.M., Long, H.A. The crystal and molecular structure of L-cysteine, Acta Crystallogr. B62 (1968) 1096–1102.

    Google Scholar 

  149. Khawas, B. X-ray study of L-arginine HCl, L-cysteine, DL-lysine, and DL-phenylalanine, Crystallogr. B62 (1971) 1517–1520.

    Google Scholar 

  150. Görbitz, C.H., Dalhus, B. L-cysteine. Monoclinic form. Redetermination at 120 K, Crystallogr. C62 (1996) 1756–1759.

    Google Scholar 

  151. Kerr, K.A., Ashmore, J.P., Koetzle, T.F. A neutron diffraction study of L-cysteine, Crystallogr. B62 (1975) 2022–2026.

    Google Scholar 

  152. Kerr, K.A., Ashmore, J.P. Structure and conformation of orthorhombic L-cysteine, Crystallogr. B62 (1973) 2124–2127.

    Google Scholar 

  153. Mathieson, A.M. The crystal structures of the dimorphs of DL-methionine, Crystallogr. 5 (1952) 332–341.

    CAS  Google Scholar 

  154. Taniguchi, T., Takaki, Y., Sakurai, K. The crystal structures of the αand βforms of DL-methionine, . Chem. Soc. Jpn. 53 (1980) 803–804.

    Google Scholar 

  155. Alagar, M., Krishnakumar, R.V., Mostad, A., Natarajan, S. DL-Methionine at 105 K, Acta Crystallogr. E61 (2005) o1165–o1167.

    CAS  Google Scholar 

  156. Ramachandran, E., Natarajan, S. Gel-growth and characterization of β-DL-methionine, t. Res. Technol. 41 (2006) 411–415.

    Google Scholar 

  157. Hirokawa, S. A new modification of L-glutamic acid and its structure, Crystallogr. 8 (1955) 637–641.

    Google Scholar 

  158. Marcoin, W., Duda, H., Kusz, J., Bzowski, B., Warcewski, J. L-glutamic acid, Appl. Crystallogr. Conference 17^th (1999) 40.

    Google Scholar 

  159. Hirayama, N., Shirahata, K., Ohashi, Y., Sasada, Y. L. Glutamic acid, . Chem. Soc. Jpn. 53 (1980) 30–35.

    CAS  Google Scholar 

  160. Lehmann, M.S., Nunes, A.C. A short hydrogen bond between near identical carboxyl groups in the α-modification of L-glutamic acid, Acta Crystallogr. 36B (1980) 1621–1625.

    Google Scholar 

  161. Lehmann, M.S., Koetzle, T.F., Hamilton, W.C. L-Glutamic Acid, J. Cryst. Mol. Struct. 2 (1972) 225.

    CAS  Google Scholar 

  162. Bernstein, J. Polymorphism of L-glutamic acid: decoding the α-βphase relationship via graph-set analysis, Acta Crystallogr. B62 (1991) 1004–1010.

    Google Scholar 

  163. Blagden, N., Davey, R. Polymorph selection: challenges for the future, Crystal Growth & Design 3(6) (2003) 873–885.

    CAS  Google Scholar 

  164. Cashell, C., Sutton, D., Corcoran, D., Hodnett, B.K. Inclusion of the stable form of a polymorph within crystals of its metastable form, Crystal Growth and Design. 3(6) (2003) 869–872.

    CAS  Google Scholar 

  165. Cashell, C., Corcoran, D., Hodnett, B.K. Secondary nucleation of the β-polymorph of L-glutamic acid on the surface of α-form crystals, ChemComm. 374 (2003) 374–375.

    Google Scholar 

  166. Ono, T., Horst, J.H., Jansens, P.J. Quantitative measurement of the polymorphic transformation of L-glutamic acid using in-situ Raman spectroscopy, Crystal Growth and Design. 4(3) (2004) 465–469.

    CAS  Google Scholar 

  167. Ono, T., Kramer, J.M., Horst, J.H., Jansens, P.J. Process modelling of the polymorphic transformation of L-glutamic acid, Crystal Growth and Design. 4(6) (2004) 1161–1167.

    CAS  Google Scholar 

  168. Frey, M.N., Lehmann, M.S., Koetzle, T.F., Hamilton, W.C. Precision neutron diffraction structure determination of protein and nucleic acid components. XI. Molecular configuration and hydrogen bonding of serine in the crystalline amino acids L-serine monohydrate and DL-serine, Acta Crystallogr. B62 (1973) 876–884.

    Google Scholar 

  169. Lahav, M., Weissbuch, I., Shavit, E., Reiner, C., Nicholson, G.J., Schurig, V. Parity violating energetic difference and enantiomorphous crystals – caveats; reinvestigation of tyrosine crystallization, Origins of Life and Evolution of the Biosphere. (2006) 36, 151–170.

    Google Scholar 

  170. Igarashi, K., Sasaki, Y., Azuma, M., Noda, H., Ooshima, H. Control of polymorphs on the crystallization of glycine using a WWDJ batch crystallizer, Eng. Life Sci. 3 (2003) 159–163.

    CAS  Google Scholar 

  171. Yu, Lian, Ng, Kingman. Glycine crystallization during spray drying: the pH effect on salt and polymorphic forms, J. Pharm. Sci. 91(11) (2002) 2367–2375.

    Google Scholar 

  172. Akers, M.J., Milton, N., Byrn, S.R., Nail, S.L. Glycine crystallization during freezing: The effects of salt form, pH, and ionic strength, Pharm. Res. 12 (1995) 1457–1461.

    CAS  Google Scholar 

  173. He, G., Bhamidi, V., Wilson, S.R., Tan, R.B.H., Kenis, P.J.A., Zukoski, C.F. Direct growth of γ-glycine from neutral aqueous solutions by slow, evaporation-driven crystallization, Crystal Growth and Design. 6(8) (2006) 1746–1749.

    CAS  Google Scholar 

  174. Allen, K., Davey, R.J., Ferrari, E., Towler, C., Tiddy, G.J. The crystallization of glycine polymorphs from emulsions, microemulsions, and lamellar phases, Crystal Growth and Design. 2(6) (2002) 523–527.

    CAS  Google Scholar 

  175. Lee, A.Y., Lee, I.S., Dette, S.S., Boerner, J., Myerson, A.S. Crystallization on confined engineering surfaces: a method to control crystal size and generate different polymorphs, J.Amer. Chem. Soc. 127 (2005) 14982–14983.

    CAS  Google Scholar 

  176. Sun, X., Garetz, B.A., Myerson, A.S. Supersaturation and polarization dependence of polymorph control in the nontopochemical laser-induced nucleation (NPLIN) of aqueous glycine solutions, Crystal Growth and Design. 1 (2001) 5–8.

    Google Scholar 

  177. Garetz, B.A., Matic, J., Myerson, A.S. Polarization switching of crystal structure in the nonphotochemical light-induced nucleation of supersaturated aqueous glycine solutions,Phys. Rev. Letters. 89(17) (2002) 175501–4.

    Google Scholar 

  178. Zaccaro, J., Matic, J., Myerson, A.S., Garetz, B.A. Nontopochemical, laser-induced nucleation of supersaturated aqueous glycine produces unexpected γ-polymorph, Crystal Growth and Design. 1(1) (2001) 5–8.

    CAS  Google Scholar 

  179. Aber, J.E., Arnold, S., Garetz, B.A., Myerson, A.S. Strong dc electric field applied to supersaturated aqueous glycine solution induces nucleation of the γ-polymorph,Phys. Rev. Lett. 94 (2005) 145503–5.

    Google Scholar 

  180. Boldyreva, E.V., Drebushchak, V.A., Drebushchak, T.N., Shutova, E.S. Synthesis and calorimetric investigation of unstable β-glycine, J. Cryst. Growth. 241 (2002) 266–268.

    Google Scholar 

  181. Torbeev, V.Yu., Shavit, E., Weissbuch, I., Leiserowitz, L., Lahav, M. Control of crystal polymorphism by tuning the structure of auxiliary molecules as nucleation inhibitors. The β-polymorph of glycine grown in aqueous solutions, Crystal Growth & Design. 5(6) (2005) 2190–2196.

    Google Scholar 

  182. Weissbuch, I., Torbeev, V.Yu., Leiserowitz, L., Lahav, M. Solvent effect on crystal polymorphism: why addition of methanol or ethanol to aqueous solutions induces the precipitation of the least stable βform of glycine, Angew. Chem. Int. Ed. 11(10) (2005) 3039–3048.

    Google Scholar 

  183. Weissbuch, I., Popovitz-Biro, R., Lahav, M., Leiserowitz, L. Understanding and control of nucleation, growth, habit, dissolution and structure of two- and three-dimensional crystals using “tailor-made” auxiliaries, Crystallogr. B62 (1995) 115–148.

    Google Scholar 

  184. Kitamura, M., Ishizu, T. Kinetic effect of L-phenylalanine on growth process of L-glutamic acid polymorph, J.Cryst. Growth. 192(1) (1998) 225–235.

    CAS  Google Scholar 

  185. Cashell, C., Corcoran, D., Hodnett, B.K. Effect of amino acid additives on the crystallization of L-glutamic acid, tal Growth & Design. 5 (2005) 593–597.

    CAS  Google Scholar 

  186. Chattopadhyay, S., Erdemir, D., Evans, J.M.B., Ilavsky, J., Amenitsch, H., Segre, C.U., Myerson, A.S. SAXS study of the nucleation of glycine crystals from a supersaturated solution, Crystal Growth & Design. 5(2) (2005) 523–527.

    CAS  Google Scholar 

  187. Gidalevitz, D., Feidenhans’l, R., Matlis, S., Smilgies, D.-M., Christensen, M.J., Leiserowitz, L. Monitoring in situ growth and dissolution of molecular crystals: towards determination of the growth units, Angew. Chem. Int. Ed. Engl. 36 (1997) 955–959.

    CAS  Google Scholar 

  188. Gavezzotti, A. Molecular Aggregation: Structure Analysis and Molecular Simulation of Crystals and Liquids, Oxford University Press, 2006.

    Google Scholar 

  189. Nuraje, N., Su, K., Samson, J., Haboosheh, A., McCuspie, R.I., Matsui, H. Self-assembly of Au nanoparticle-containing peptide nano-rings on surfaces, Supramolecular Chemistry 18(5) (2006)pv429–434.

    Google Scholar 

  190. Joshi, K.B., Verma, SOrdered self-assembly of a glycine-rich linear and cyclic hexapeptide: contrasting ultrastructural morphologies of fiber growth, amolecular Chemistry. 18(5) (2006) 405–414.

    Google Scholar 

  191. Gekko, K., Hasegawa, Y. Compressibility-structure relationship of globular proteins, BioChemistry. 25(21) (1986) 6563–6571.

    CAS  Google Scholar 

  192. Gekko, K. Compressibility gives new insight into protein dynamics and enzyme function, him. Biophys. Acta. 1595 (2002) 382–386.

    Google Scholar 

  193. Boldyreva, E.V., Tumanov, N.A., Ahsbahs, H., Dmitriev, V.P. High-resolution X-ray diffraction study of the effect of pressure on β-glycine, in preparation.

    Google Scholar 

  194. Boldyreva, E.V., Seryotkin, Yu. V., Ahsbahs, H., Dmitriev, V.P. High-resolution X-ray diffraction study of the effect of pressure on L- and DL-alanine, in preparation.

    Google Scholar 

  195. Boldyreva, E.V., Goryainov, S.V., Seryotkin, Yu.V., Ahsbhas, H., Dmitriev, V.P. Pressure-induced phase transitions in the crystals of β-alanine, Vestnik NGU, Ser. Fizika (Proceed. NSU, Series Physics), 2(2) (2007) 30–35.

    Google Scholar 

  196. Nye, J.F. Physical properties of crystals. Their representation by tensors and matrices, Clarendon Press, Oxford (1957).

    Google Scholar 

  197. Hazen, R., Finger, L. Comparative Crystal Chemistry. Temperature, Pressure, Composition and Variation of the Crystal Structure, Wiley, NewYork USA (1982).

    Google Scholar 

  198. Katrusiak, A. High-pressure X-ray diffraction studies on organic crystals, Cryst. Res. Techn. 26 (1991) 523–531.

    CAS  Google Scholar 

  199. Katrusiak, A. General description of hydrogen-bonded solids at varied pressures and temperatures. In: Katrusiak, A., McMillan, P. (Eds). High-Pressure Crystallography, NATO Science Series. II. Mathematics, Physics and Chemistry, Vol. 140 (2004) Kluwer, Dordrecht, Netherlands 513–520.

    Google Scholar 

  200. Su, C.-C., Chang, H.-C., Jiang, J.-C., Wei, P.-Y., Lu, L.-C., Lin, S.H. Evidence of charge-enhanced C—H—O interactions in aqueous protonated imidazole probed by high pressure infrared spectroscopy, hem. Phys. 119(20) (2003) 10753–10758.

    Google Scholar 

  201. Chang, H.-C., Lee, K. M., Jiang, J.-C., Lin, M.-S., Chen, J.-S., Lin, I.J.B., Lin, S.H. Charge-enhanced C—H—O interactions of a self-assembled triple helical spine probed by high-pressure, hem. Phys. 117(4) (2002) 1723–1728.

    Google Scholar 

  202. Goryainov, S.V., Boldyreva, E., Smirnov, M.B., Madyukov, I.A., Kolesnik, E.N. Raman spectroscopy study of the effect of pressure on α-glycilglycine, Physica B (2007), submitted.

    Google Scholar 

  203. Chernoby, G.B., Chesalov, Yu.A., Burgina, E.B., Drebushchak, T.N., Boldyreva, E.V. Variable-temperature IR-spectroscopy study of the crystalline amino acids, dipeptides and polyaminoacids. I. Glycine, Russ. J. Struct. Chem. 48(2) (2007) 339–347.

    Google Scholar 

  204. Pain, R.H. Mechanisms of Protein Folding, Frontiers in Molecular Biology, Ser. Ed. B.D. Hames and D.M. Glover, Oxford University Press, Oxford UK (2000).

    Google Scholar 

  205. Chatani, E., Kato, M., Kawai, T., Naiki, H. Goto, Y. Main-chain dominated amyloid structures demonstrated by the effect of high pressure, J.Mol. Biol. 352 (2005) 941–951.

    CAS  Google Scholar 

  206. Isenberg, H., Kjaer, K., Rapaport, H. Elasticity of crystalline β-sheet monolayers, J.Amer. Chem. Soc. 128 (2006) 12468–12472.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this paper

Cite this paper

Boldyreva, E. (2008). Crystalline Amino Acids. In: Boeyens, J.C., Ogilvie, J. (eds) Models, Mysteries and Magic of Molecules. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5941-4_7

Download citation

Publish with us

Policies and ethics