Skip to main content

Molecular Conformation and Crystal Lattice Energy Factors in Conformational Polymorphs

  • Conference paper
Models, Mysteries and Magic of Molecules

Abstract

In crystal structures of flexible molecules the total energy is a summation of the molecular conformer and crystal lattice energy contribution. These two energy factors are of comparable magnitude in organic solids because bond torsions and intermolecular interactions have similar energies, worth a few kcal mol-1. The two contributions may be additive or cancel one another. Polymorphism is likely in molecular systems wherein molecular conformer and crystal lattice energy effects compensate each other, i.e. a metastable conformer resides in a stable packing arrangement or a stable rotamer is assembled in a metastable crystal environment. Consequently, conformational polymorph energy differences occur in a small window of <3 kcal mol-1. Several organic conformational polymorph clusters that highlight this principle are discussed in this chapter

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. C. McCrone, in Physics and Chemistry of the Organic Solid State, Vol. 2, D. Fox, M. M. Labes and A. Weissberger (Eds.), Wiley Interscience: New York, 1965, pp. 725–767.

    Google Scholar 

  2. J. Bernstein, Polymorphism in Molecular Crystals, Clarendon, Oxford, 2002.

    Google Scholar 

  3. a) A. Kálmán, L. Fábián, G. Argay, G. BernPth and Z. Gyarmati, J. Am. Chem. Soc., 125 (2003) 34; b) I. Weissbuch, V. Y. Torbeev, L. Leiserowitz and M. Lahav, Angew. Chem. Int. Ed., 44 (2005) 3226; c) M. Morimoto, S. Kobatake and M. Irie, Chem. Eur. J., 9 (2003) 621; d) P. Raiteri, R. Martoňák and M. Parrinello, Angew. Chem. Int. Ed., 44 (2005) 3769; e) P. K. Thallapally, R. K. R. Jetti, A. K. Katz, H. L. Carrell, K. Singh, K. Lahiri, S. Kotha, R. Boese and G. R. Desiraju, Angew. Chem. Int. Ed., 43 (2004) 1149; f) H. Chow, P. A. W. Dean, D. C. Craig, N. T. Lucas, M. L. Scudder and I. G. Dance, New J. Chem., 27 (2003) 704; g) R. G. Gonnade, M. M. Bhadbhade and M. S. Shashidhar, Chem. Commun., (2004) 2530; h) C. Guo, M. B. Hickey, E. R. Guggenheim, V. Enkelmann and B. M. Foxman, Chem. Commun., (2005) 2220; i) W. I. F. David, K. Shankland, C. R. Pulham, N. Bladgen, R. J. Davey and M. Song, Angew. Chem. Int. Ed., 44 (2005) 7032.

    Google Scholar 

  4. a) R. J. Davey, Chem. Commun. (2003) 1463; b) N. Blagden and R. J. Davey, Cryst. Growth Des., 3 (2003) 873; c) P. Erk, H. Hengelsberg, M. F. Haddow and R. van Gelder, CrystEngComm, 6 (2004) 474; d) J. Bernstein, Chem. Commun., (2005) 5007; e) L. Yu, J. Am. Chem. Soc., 125 (2003) 6380; f) P. Vishweshwar, J. A. McMahon, M. Oliveira, M. L. Peterson and M. J. Zaworotko, J. Am. Chem. Soc., 127 (2005) 16802; g) C. P. Price, A. L. Grzesiak and A. J. Matzger, J. Am. Chem. Soc., 127 (2005) 5512; h) R. J. Davey, G. Dent, R. K. Mughal and S. Praveen, Cryst. Growth Des., 6 (2006) 1788.

    Google Scholar 

  5. a) S. R. Bryn, R. R. Pfeiffer and J. G. Stowell, Solid-State Chemistry of Drugs, SSCI, West Lafayette, IN, 1999; b) R. Hilfiker, F. Blatter and M. von Raumer, in Polymorphism in the Pharmaceutical Industry, R. Hilfiker (Ed.), Wiley–VCH, Weinheim, 2006, 1–19.

    Google Scholar 

  6. J. van de Streek and S. Motherwell, Acta Crystallogr., B61 (2005) 504.

    Google Scholar 

  7. J. Chisholm, E. Pidcock, J. van de Streek, L. Infantes, S. Motherwell and F. H. Allen, CrystEngComm, 8 (2006) 11.

    Google Scholar 

  8. S. Chen, I. A. Guzei and L. Yu, J. Am. Chem. Soc., 127 (2005) 9881.

    Google Scholar 

  9. a) C. P. Brock and L. L. Duncan, Chem. Mater., 6 (1994) 1307; b) J. W. Steed, CrystEngComm, 5 (2003) 169; c) S. Aitipamula and A. Nangia, Chem. Eur. J., 11 (2005) 6727; d) X. Hao, J. Chen, A. Cammers, S. Perkin and C. P. Brock, Acta Crystallogr., B61 (2005) 218; e) D. Das, R. Banerjee, R. Mondal, J. A. K. Howard, R. Boese and G. R. Desiraju, Chem. Commun., (2006) 555; f) K. M. Anderson, A. E. Goeta, K. S. B. Hancock and J. W. Steed, Chem. Commun., (2006) 2138; g) N. J. Babu and A. Nangia, Cryst. Growth Des., 6 (2006) 1995.

    Google Scholar 

  10. A. Nangia, Cryst. Growth Des., 6 (2006) 2.

    Article  CAS  Google Scholar 

  11. G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, IUCR Monograph, Oxford University Press, Oxford, 1999.

    Google Scholar 

  12. J. Bernstein, in Organic Solid State Chemistry, G. R. Desiraju (Ed.), Elsevier: Amsterdam, 1987, pp. 471–518.

    Google Scholar 

  13. Gaussian 03: www.gaussian.com; Spartan 04: www.wavefun.com; Cerius2: www.accelrys.com.

    Google Scholar 

  14. V. S. S. Kumar, A. Addlagatta, A. Nangia, W. T. Robinson, C. K. Broder, R. Mondal, I. R. Evans, J. A. K. Howard and F. H. Allen, Angew. Chem. Int. Ed., 41 (2002) 3848.

    Article  CAS  Google Scholar 

  15. S. Roy, R. Banerjee, A. Nangia and G. J. Kruger, Chem. Eur. J., 12 (2006) 3777.

    Article  CAS  Google Scholar 

  16. N. Krauss and G. Nolze, Federal Institute for Materials Research and Testing, Berlin, Germany, 2000.

    Google Scholar 

  17. S. K. Chandran and A. Nangia, CrystEngComm, 8 (2006) 581.

    Article  CAS  Google Scholar 

  18. G. S. Nichol and W. Clegg, Cryst. Growth Des., 6 (2006) 451.

    Article  CAS  Google Scholar 

  19. X. Hao, M. A. Siegler, S. Parkin and C. P. Brock, Cryst. Growth Des., 5 (2005) 2225.

    Article  CAS  Google Scholar 

  20. B. Sarma, S. Roy and A. Nangia, Chem. Commun., (2006) 4918.

    Google Scholar 

  21. E. Weber, K. Skobridis, A. Wierig, L. R. Nassimbeni and L. Johnson, J. Chem. Soc., Perkin Trans 2, (1992) 2123.

    Google Scholar 

  22. a) T. W. Lewis, I. C. Paul and D. Y. Curtin, Acta Crystallogr., B36 (1980) 70; b) E. N. Duesler, T. W. Lewis, I. C. Paul and D. Y. Curtin, Acta Crystallogr., B36 (1980) 166.

    Google Scholar 

  23. S. K. Chandran, S. Roy and A. Nangia, unpublished results.

    Google Scholar 

  24. S. Roy and A. Nangia, unpublished results.

    Google Scholar 

  25. J. D. Dunitz and A. Gavezzotti, Cryst. Growth Des., 5 (2005) 2180.

    Article  CAS  Google Scholar 

  26. a) B. Rodríguez-Spong, C. P. Price, A. Jayashankar, A. J. Matzger and N. Rodríguez-Hornendo, Adv. Drug. Del. Rev., 56 (2004) 241; b) C. R. Gardner, C. T. Walsh and Ö. Almarsson, Nature Reviews, 3 (2004) 926; c) J. Bernstein, Chem. Commun., (2005) 5007; d) A.V. Trask and W. Jones, Top. Curr. Chem., 254 (2005) 41.

    Google Scholar 

  27. S. Aitipamula and A. Nangia, Chem. Commun., (2005) 3159.

    Google Scholar 

  28. T. C. W. Mak and C.-K. Lam, in Encyclopedia of Supramolecular Chemistry, Vol. 1, J. L. Atwood and J. W. Steed (Eds.), Marcel Dekker, 2004, pp. 679–685.

    Google Scholar 

  29. S. Roy, P. M. Bhatt, A. Nangia and G. J. Kruger, Cryst. Growth Des., 7 (2007) 476.

    Article  CAS  Google Scholar 

  30. S. Roy, S. Aitipamula and A. Nangia, Cryst. Growth Des., 5 (2005) 2268.

    Article  CAS  Google Scholar 

  31. G. R. Desiraju, CrystEngComm, 9 (2007) 91.

    Article  Google Scholar 

  32. K. M. Anderson and J. W. Steed, CrystEngComm, 9 (2007) 328.

    Article  CAS  Google Scholar 

  33. M. Rafilovich and J. Bernstein, J. Am. Chem. Soc., 128 (2006) 12189.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this paper

Cite this paper

Nangia, A. (2008). Molecular Conformation and Crystal Lattice Energy Factors in Conformational Polymorphs. In: Boeyens, J.C., Ogilvie, J. (eds) Models, Mysteries and Magic of Molecules. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5941-4_3

Download citation

Publish with us

Policies and ethics