Skip to main content

The Ligand-Field Paradigm

Insight into Electronic Properties of Transition-metal Complexes Based on Calculations of Electronic Structure

  • Conference paper
Models, Mysteries and Magic of Molecules

Abstract

An overview and a critical comparison of contemporary models to describe and to predict electronic multiplet structures and the spectroscopic behavior of transition-metal complexes with open d-shells is given in relation to experimental data including d-d absorption and ESR spectra. A ligand-field density-functional theory (LFDFT) predicts these properties with a success similar to ab initio approaches, such as the spectroscopy oriented configuration-interaction method, and better than time-dependent density-functional theory applied to open shell systems. Using well characterized systems, from classical coordination compounds [FeO4 2-, CrX6 3- (X=F,Cl), CoL6 z(z=-3, L=CN-; z=2 and 3, L=H2O)] to FeIV macrocyclic compounds with biochemical and catalytic activity, it is shown that LFDFT is able also to characterize larger systems and subtle effects such as those from surrounding influences and the second coordination sphere

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.J. Bridgeman and M. Gerloch, Progr.Inorg.Chem. 45(1996) 179–281.

    Article  Google Scholar 

  2. T. Schönherr, M. Atanasov and H.Adamsky, In: A.B.P. Lever (ed) Comprehensive Coordination Chemistry II, From Biology to Nanotechnology, Fundamentals, Vol. 1, Section 2.36, Elsevier, Amsterdam Netherlands, 2003, p. 443–455.

    Google Scholar 

  3. (a) F. Neese, T. Petrenko, D. Ganyushin and G. Olbrich, Coord.Chem.Rev. 251(2007) 288–327. (b) M. Atanasov, C.A. Daul and C. Rauzy, Chem.Phys.Lett. 367(2003) 737–746.

    Google Scholar 

  4. M. Atanasov, C. Daul and C. Rauzy, Struct. and Bonding, 106(2004) 97–125.

    CAS  Google Scholar 

  5. M. Atanasov, C. Rauzy, P. Bättig and C. Daul, Int. J. Quantum Chem. 102(2005) 119–131.

    Article  CAS  Google Scholar 

  6. C.Daul, C.Rauzy, M.Zbiri, P.Baettig, R.Bruyndonckx, E.J.Baerends and M.Atanasov, Chem.Phys.Lett. 399(2004), 433–439.

    Google Scholar 

  7. F. Neese, J. Chem. Phys. 119(2003), 9428–9443.

    Article  CAS  Google Scholar 

  8. E.K.U. Gross and W. Kohn, Adv. Quantum Chem. 21(1990) 255.

    CAS  Google Scholar 

  9. E.K.U. Gross, J.F. Dobson and M. Petersilka, In: R. F. Nalewajski (ed) Density Functional Theory, Springer Series: Topics in Current Chemistry, Springer, Berlin Germany, 1996.

    Google Scholar 

  10. M.E. Casida, In: D.P. Chong (ed) Recent advances in density functional methods, Vol.1, World Scientific, Singapore, 1995, p. 155.

    Google Scholar 

  11. (a) R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett. 256(1996) 454. (b) R. Bauernschmitt and R. Ahlrichs, J. Chem. Phys. 104(1996) 9047–9052.

    Google Scholar 

  12. S.J.A. Van Gisbergen, J.G. Snijders and E.J. Baerends, J. Chem. Phys. 103(1995) 9347.

    Article  Google Scholar 

  13. A. Rosa, G. Ricciardi, O. Gritsenko and E.J. Baerends, Struct.Bond. 112(2004)49–116.

    CAS  Google Scholar 

  14. F. Wang and T. Ziegler, Mol. Phys. 102(2004) 2585.

    Article  CAS  Google Scholar 

  15. A. Dreuw, M. Head-Gordon, Chem. Rev. 105(2005) 4009–4037.

    Article  CAS  Google Scholar 

  16. F. Wang, T. Ziegler, E. van Lenthe, S.J.A. Van Gisbergen and E.J. Baerends, J. Chem. Phys. 122(2005) 204103.

    Google Scholar 

  17. M. Seth and T. Ziegler, J. Chem. Phys. 123(2005) 144105.

    Article  CAS  Google Scholar 

  18. H. Bethe, Ann. d. Physik, 3(1929) 165.

    Google Scholar 

  19. J.H. Van Vleck, J. Chem. Phys. 3(1935) 803–806.

    Google Scholar 

  20. J.H. Van Vleck, J. Chem. Phys. 3(1935) 807–813.

    Google Scholar 

  21. C.K. Jørgensen, R. Pappalardo and H.-H. Schmidtke, J. Chem. Phys. 39(1963) 1422.

    Article  Google Scholar 

  22. H.-H. Schmidtke and Z. Naturforsch. 19a(1964) 1502–1510.

    Google Scholar 

  23. C.E. Schäffer and C.K. Jørgensen, Mol. Phys. 9(1965) 401–412.

    Article  Google Scholar 

  24. C.E. Schäffer, Struct. Bond. 5(1968) 68–95.

    Google Scholar 

  25. M. Gerloch, J.H. Harding and R.G. Woolley, Struct. Bond. 46(1981) 1–46.

    CAS  Google Scholar 

  26. R.G. Woolley, Mol. Phys. 42(1981) 703–720.

    Article  CAS  Google Scholar 

  27. M. Gerloch and R.G. Woolley, Progr. Inorg. Chem. 31(1984) 371–446.

    Article  CAS  Google Scholar 

  28. M. Atanasov, C.A. Daul and E. Penka Fowe, Monatshefte für Chemie, 136(2005) 925–963.

    Google Scholar 

  29. P.-O. Löwdin, In: C.H. Wilcox (ed) Perturbation Theory and its Applications in Quantum Mechanics, Wiley, New York USA, 1966, p. 255–294.

    Google Scholar 

  30. C.J. Ballhausen and J.P. Dahl, Theor. Chim. Acta, 34(1974) 169.

    Article  CAS  Google Scholar 

  31. C.J. Ballhausen, Molecular Electronic Structures of Transition Metal Complexes, McGraw-Hill, New York USA, 1979, pp. 53–54.

    Google Scholar 

  32. M. Atanasov, C. Daul, H.U. Güdel, T.A. Wesolowski and M. Zbiri, Inorg. Chem. 44(2005) 2954–2963.

    Article  CAS  Google Scholar 

  33. M. Atanasov and H.-H. Schmidtke, Chem. Phys. 124(1988) 205.

    Article  CAS  Google Scholar 

  34. M. Atanasov and C.A. Daul, Chem. Phys. Lett. 379(2003) 209.

    Article  CAS  Google Scholar 

  35. M. Atanasov and C.A. Daul, Chem. Phys. Lett. 381(2003) 584.

    Article  CAS  Google Scholar 

  36. M. Atanasov and C.A. Daul, Chimia, 59(2005) 504–510.

    Article  CAS  Google Scholar 

  37. H. Adamsky, T. Schönherr and M. Atanasov, In: A.B.P. Lever (ed) Comprehensive Coordination Chemistry II, From Biology to Nanotechnology, Vol. 2, Elsevier, Amsterdam Netherlands, 2003, p. 661–664; http://www.aomx.de

    Google Scholar 

  38. A.J. Bridgeman, In: A.B.P. Lever (ed) Comprehensive Coordination Chemistry II, From Biology to Nanotechnology, Fundamentals, Vol. 2, Elsevier, Amsterdam Netherlands, 2003, p. 669–672; A.R. Dale, M.J. Duer, N.D. Fenton, M. Gerloch, M. Jones and R.F. McMeeking, CAMMAG5, University of Cambridge, 2001, available by contacting Dr. A.J. Bridgeman, University of Hull, UK, E-mail: a.j.bridgeman@hull.ac.uk.

    Google Scholar 

  39. J. Bendix, In: A.B.P. Lever (ed) Comprehensive Coordination Chemistry II, From Biology to Nanotechnology, Vol. 2, Elsevier, Amsterdam Netherlands, 2003. p. 673–676; Ligfield.

    Google Scholar 

  40. M. Atanasov and C.A. Daul, C.R. Chimie 8(2005) 1421–1433.

    Google Scholar 

  41. A. Berces et al, ADF2004.01; SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, 2004. Available from: http://www.scm.com/

    Google Scholar 

  42. For a clear account of the method including [Cu(NH3)4]2+ as a completely worked out example see: F.Neese, Magn.Res.Chem. 42(2004) S187–S198.

    Google Scholar 

  43. J. Miralles, J.P. Daudey and R. Caballol, Chem. Phys. Lett. 198(1992), 555.

    Article  CAS  Google Scholar 

  44. J. Miralles, O. Castell, R. Caballol and J.P. Malrieu, Chem. Phys. 172(1993), 33.

    Article  CAS  Google Scholar 

  45. (a) B. Huron, J.P. Malrieu and P. Rancurel, J. Chem. Phys. 58(1973) 5745. (b) R.J. Buenker and S.D. Peyerimhoff, Theoret. Chim. Acta, 35(1974) 33. (c) M. Hanrath, B. Engels, Chem. Phys. 225(1997) 197.

    Google Scholar 

  46. F. Neese, ORCA, an ab-initio, density functional and semiempirical program package, Max-Planck Institute for Bioinorganic Chemistry, Mülheim an der Ruhr, Germany, 2005.

    Google Scholar 

  47. E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52(1984) 997.

    Article  CAS  Google Scholar 

  48. C. Jamorski, M.E. Casida and D.R. Salahub, J. Chem. Phys. 104(1996) 5134.

    Article  CAS  Google Scholar 

  49. R.E. Stratmann, G.E. Scuseria and M.J. Frisch, J. Chem. Phys. 109(1998) 8218.

    Article  CAS  Google Scholar 

  50. D.J. Tozer and N.C. Handy, J. Chem. Phys. 109(1998) 10180.

    Article  CAS  Google Scholar 

  51. S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 302(1999) 375.

    Article  CAS  Google Scholar 

  52. S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314(1999) 291.

    Article  CAS  Google Scholar 

  53. S.J.A. Van Gisbergen, J.G. Snijders and E.J. Baerends, Comput. Phys. Commun. 118(1999), 119.

    Article  Google Scholar 

  54. S.J.A. Van Gisbergen, J.A. Groeneveld, A. Rosa, J.G. Snijders and E.J. Baerends, J. Phys. Chem. A 103(1999) 6835.

    Article  CAS  Google Scholar 

  55. A. Rosa, E.J. Baerends, S.J.A. Van Gisbergen, E. Van Lenthe, J.A. Groeneveld and J.G. Snijders, J. Am. Chem. Soc. 121(1999) 10356.

    Article  CAS  Google Scholar 

  56. A. Rosa, G. Ricciardi, E.J. Baerends and S.J.A. Van Gisbergen, J. Phys. Chem. A, 105(2001) 3311.

    Article  CAS  Google Scholar 

  57. A. Dreuw, L.J. Weisman and M. Head-Gordon, J. Chem. Phys. 119(2003) 2943.

    Article  CAS  Google Scholar 

  58. E. Broclawik and T. Borowski, Chem. Phys. Lett. 339(2001) 433.

    Article  CAS  Google Scholar 

  59. B. Dai, K. Deng, J. Yang and Q. Zhu, J. Chem. Phys. 118(2003) 9608.

    Article  CAS  Google Scholar 

  60. V.N. Nemykin and P. Basu, Inorg. Chem. 42(2003) 4046.

    Article  CAS  Google Scholar 

  61. G.te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. Van Gisbergen, J.G. Snijders and T. Ziegler, J. Comput. Chem. 22(2001) 931–967; http://www.scm.com/

    Google Scholar 

  62. E.R. Davidson, J. Comput. Phys. 17(1975) 87.

    Article  Google Scholar 

  63. B.J. Hathaway and F. Stephens, J. Chem. Soc. (A) 1970, 884–888.

    Google Scholar 

  64. D.W. Smith, Inorg. Chim. Acta, 22(1977) 107.

    Article  CAS  Google Scholar 

  65. D.W. Smith, Struct. Bond.(Berl) 35(1978) 87–118.

    CAS  Google Scholar 

  66. M.A. Hitchman, R.G. McDonald and D. Reinen, Inorg. Chem. 25(1986) 519–522.

    Article  CAS  Google Scholar 

  67. F. Neese, J. Biol. Inorg. Chem. 11(2006) 702–711.

    Article  CAS  Google Scholar 

  68. A.D. Liehr, J. Phys. Chem. 68(1964) 665–772.

    Article  CAS  Google Scholar 

  69. R.J. Deeth, M.J. Duer and M. Gerloch, Inorg. Chem. 26(1987) 2573–2578.

    Article  CAS  Google Scholar 

  70. R.J. Deeth, M.J. Duer and M. Gerloch, Inorg. Chem. 26(1987) 2578–2582.

    Article  CAS  Google Scholar 

  71. R.J. Deeth and M. Gerloch, Inorg. Chem. 26(1987) 2582–2585.

    Article  CAS  Google Scholar 

  72. M.J. Duer, N.D. Fenton and M. Gerloch, Int. Rev. Phys. Chem. 9(1990) 227–280.

    CAS  Google Scholar 

  73. D. Reinen, M. Atanasov and S.-L. Lee, Coord. Chem. Rev. 175(1998) 91–158.

    Article  CAS  Google Scholar 

  74. L.E. Orgel, J. Chem. Soc. 1961, 3683.

    Google Scholar 

  75. A. Ceulemans, M. Dendooven and L.G. Vanquickenborne, Inorg. Chem. 24(1985) 1153.

    Article  CAS  Google Scholar 

  76. A. Ceulemans, M. Dendooven and L.G. Vanquickenborne, Inorg. Chem. 24(1985) 1159.

    Article  CAS  Google Scholar 

  77. A. Ceulemans, R. Debuyst, F. Dejehet, G.S.D. King, M. Vanhecke and L.G. Vanquickenborne, J. Phys. Chem. 94(1990) 105–113.

    Article  CAS  Google Scholar 

  78. M.R. Bukowski, P. Comba, C. Limberg, M. Merz, L. Que, Jr, T. Wistuba, Angew. Chem. Int. Ed. 43(2004) 1283–1287.

    Article  CAS  Google Scholar 

  79. M.R. Bukowski, P. Comba, A. Lienke, C. Limberg, C. Lopez de Laorden, R. Mas-Balleste, M. Merz, L. Que, Jr, Angew. Chem. Int. Ed. 118(2006) 3524.

    Google Scholar 

  80. P. Comba and G. Rajaraman, submitted for publication.

    Google Scholar 

  81. J.-U. Rohde, J.-H. In: M.H. Lim, W.W. Brennessel, M.R. Bukowski, A. Stubna, E.Münck, W. Nam and L. Que, Jr., Science 299(2003) 1037–1039.

    Google Scholar 

  82. A. Decker, J.-U. Rohde, L. Que, Jr. and E.I. Solomon, J. Am. Chem. Soc. 126(2004) 5378–5379.

    Google Scholar 

  83. F. Neese, J. Inorg. Biochem. 100(2006) 716–726.

    Article  CAS  Google Scholar 

  84. J.C. Schöneboom, F. Neese and W. Thiel, J. Am. Chem. Soc. 127(2005) 5840–5853.

    Article  CAS  Google Scholar 

  85. C.K. Jørgensen, Struct. Bond. 1(1966) 3–31.

    Article  Google Scholar 

  86. C. Anthon, J. Bendix and C.E. Schäffer, Inorg. Chem. 42(2003) 4088.

    Article  CAS  Google Scholar 

  87. C. Anthon, J. Bendix and C.E. Schäffer, Inorg. Chem. 43(2004) 7882.

    Article  CAS  Google Scholar 

  88. A. Borel, L. Helm and C. Daul, Chem. Phys. Lett. 383(2004) 584.

    Article  CAS  Google Scholar 

  89. L. Petit, A. Borel, C. Daul, P. Maldivi and C. Adamo, Inorg. Chem. 45(2006) 7382–7388.

    Article  CAS  Google Scholar 

  90. M. Atanasov, C. Daul and H.U. Güdel, In: J. Leszczynski (ed) Computational Chemistry: Reviews of Current Trends, Vol.9, World Scientific, New Jersey USA, 2005, p. 153–194.

    Google Scholar 

  91. M. Atanasov, P. Comba and C.A. Daul, J. Phys. Chem. A, 2006, 110(2006) 13332–13340.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this paper

Cite this paper

Atanasov, M., Comba, P., Daul, C.A., Neese, F. (2008). The Ligand-Field Paradigm. In: Boeyens, J.C., Ogilvie, J. (eds) Models, Mysteries and Magic of Molecules. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5941-4_19

Download citation

Publish with us

Policies and ethics