Skip to main content

Raman Spectroscopy

The biomolecular detection of life in extreme environments

  • Conference paper

Abstract

The strategic adaptation of extremophiles (organisms which can survive where humans cannot) to survival in hostile terrestrial environments depends critically upon their synthesis of protectant biomolecules in geological niches to combat low wavelength radiation insolation, desiccation, and extremes of temperature and pH.

Each year sees the discovery of novel geological scenarios in which organisms have successfully created a tenacious colonisation in “limits of life” habitats. Terrestrial analogues such as hot and cold deserts, volcanoes and geothermal springs provide models for the extraterrestrial study of the evolution of life in our Solar System – astrobiology. In particular, the current robotic exploration of the surface and subsurface of Mars, our neighbouring planet which has held ancient magical significance for our ancestors and is still shrouded in mysteries, is now indicative of the importance of a range of terrestrial scenarios which can be considered as Mars analogues. The next phase of Martian exploration must address the robotic search for extinct or extant life in the geological record, which is essential for the proposed human missions in the next two decades. A key factor in the armoury of remote analytical instrumentation that is now envisaged for inclusion on extended-range Mars landers and rovers is the identification of the chemical and biochemical protectants that might have been produced by extremophiles for survival in the Martian deserts. The molecular signatures evidenced from the Raman spectra of these key protectants will be fundamental for the detection of biological activity on Mars and the adoption of miniaturised Raman spectrometers for Martian exploration is now being seriously considered by NASA and ESA. In this context, the evaluation of prototype Raman spectroscopic instrumentation for the detection of molecules of relevance to a wide range of terrestrial extremophilic activity is now being addressed and forms the subject of this article. Exemplars from various geological scenarios in the Arctic and Antarctic cold deserts and from relevant hot desert habitats, such as volcanic geothermal springs and salt pan evaporites, will reinforce the tenet of this book – that the molecular studies of extremophilic models will be pivotal in the understanding of the magic and mysteries of evolution of life on Earth and the search for life on Mars

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.K. Hartman, “A Traveller’s Guide to Mars”, Workman Publ., New York (2003).

    Google Scholar 

  2. W. Thomson, Nature, 4, 262 (1871).

    Google Scholar 

  3. C.P. McKay, Origins of Life & Evolution of the Biosphere, 27, 263 (1997).

    Article  CAS  Google Scholar 

  4. M.C. Malin and K.S. Edgett, Science, 288, 2330 (2000).

    Article  CAS  Google Scholar 

  5. M.H. Carr, “Water on Mars”, Oxford University Press, New York (1996).

    Google Scholar 

  6. D.D. Wynn-Williams and H.G.M. Edwards, Environmental UV Radiation:Biological Strategies for Protection and Avoidance, in “Astrobiology: The Quest for Life in the Solar System”, eds. G. Horneck and C. Baumstarck-Khan, Springer-Verlag, Berlin 244–260 (2000).

    Google Scholar 

  7. C.S. Cockell, Planetary and Space Sciences, 48, 203 (2000).

    Article  CAS  Google Scholar 

  8. R. Caricchidi, Astrobiology, 2, 281 (2002).

    Article  Google Scholar 

  9. C.S. Cockell and J. Knowland, Biol. Revs., 74, 311 (1999).

    Article  CAS  Google Scholar 

  10. D.D. Wynn-Williams and H.G.M. Edwards, Icarus, 144, 486 (2000).

    Article  CAS  Google Scholar 

  11. A. Brack, B. Fitton, F. Raulin and A. Wilson, “Exobiology in the Solar System and the Search for Life on Mars”, ESA Special Publication (SP-1231), ESA Publications Division, Noordwijk, The Netherlands (1999).

    Google Scholar 

  12. S.E. Jorge Villar and H.G.M. Edwards, Analytical & Bioanalytical Chemistry, 384, 100–113 (2006).

    Google Scholar 

  13. I.R. Lewis and H.G.M. Edwards, “Handbook of Raman Spectroscopy: From the Process Line to the Laboratory”, Marcel Dekker, New York (2000).

    Google Scholar 

  14. A. Ellery and D.D. Wynn-Williams, Astrobiology, 3, 565 (2003).

    Article  CAS  Google Scholar 

  15. H.G.M. Edwards, E.M. Newton, D.L. Dickensheets, D.D. Wynn-Williams, C. Schoen and C. Crowder, International J.Astrobiology, 1, 333, (2003).

    Article  Google Scholar 

  16. H.G.M. Edwards, E.M. Newton, D.L. Dickensheets and D.D. Wynn-Williams, Spectrochimica Acta, Part A, 59, 2277 (2003).

    Article  Google Scholar 

  17. D.L. Dickensheets, D.D. Wynn-Williams, H.G.M. Edwards, C. Schoen, C. Crowder and E.M. Newton, J.Raman Spectroscopy, 31, 633 (2000).

    Article  CAS  Google Scholar 

  18. A. Wang, L.A. Haskin, A.L. Lane, T.J. Wdowiak, S.W. Squyres, R.J. Wilson, L.E. Hovland, K.S. Manatt, N. Raouf and C.D. Smith, J. Geophys. Res. Planets, 108, (E1), Art. No.5005 (2003).

    Google Scholar 

  19. A. Wang and L.A. Haskin, Microbeam Analysis 2000, Proc. Inst. Phys. Conf. Series, 165, 103 (2000).

    CAS  Google Scholar 

  20. “ESA Progress Letter 4: Pasteur Instrument Payload for the Exo Mars Rover Mission”, ESA Publications Division, Noordwijk, The Netherlands (2004).

    Google Scholar 

  21. D.A. Long, “The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules”, John Wiley & Sons Ltd, Chichester, UK. (2002).

    Google Scholar 

  22. H.G.M. Edwards, Origins of Life & Evolution of the Biosphere, 34, 3 (2004).

    Article  CAS  Google Scholar 

  23. S.J. Wentworth and J.L. Gooding, Parent Planet Meteorites, 29, 860–863 (1994).

    CAS  Google Scholar 

  24. M.D. Lane and P.R. Christensen, Icarus, 135, 528 (1998).

    Article  CAS  Google Scholar 

  25. D.C. Catling, J. Geophys. Res-Planets, 104, 16453–16469 (1999).

    Article  CAS  Google Scholar 

  26. J.C. Bridges, D.C. Catling, J.M. Saxton, T.D. Swindle, I.C. Lyon and M.M. Grady, Space Sci. Revs., 96, 365–392 (2001).

    Article  CAS  Google Scholar 

  27. M.E.E. Madden, R.J. Bodnar and J.D. Rimstidt, Nature, 431, 821–823 (2004).

    Article  Google Scholar 

  28. D.T. Vaniman, D.L. Bish, S.J. Chipera, C.I. Fialips, J.W. Carey and W.C. Feldman, Nature, 431, 663–665 (2004).

    Article  CAS  Google Scholar 

  29. R.E. Arvidson, F. Poulet, J.P. Bibring, M. Wolff, A. Gendrin, R.V. Morris, J.J. Freeman, Y. Langevin, N. Mangold and G. Bellucci, Science, 307, 1587–1591 (2005).

    Article  Google Scholar 

  30. Y. Langevin, F. Poulet, J.P. Bibring and B. Gondet, Science, 307, 1584–1586 (2005).

    Article  CAS  Google Scholar 

  31. J.B. Murray, J.P. Muller, G. Neukum, S.C. Werner, S. van Gasselt, E. Hauber, W.J. Markiewicz, J.W. Head, B.W. Fong, D. Page, K.L. Mitchell and G. Portyankina, Nature, 434, 352–356 (2005).

    Article  CAS  Google Scholar 

  32. N.A. Cabrol, E.A. Grin and W.H. Pollard, Icarus, 145, 91–207 (2000).

    Article  Google Scholar 

  33. J.M. Moore and D.E. Willhelms, Icarus, 154, 258–276 (2001).

    Article  CAS  Google Scholar 

  34. D.A. Paige, Science, 307, 1575–1576 (2005).

    Article  CAS  Google Scholar 

  35. H. Hiesinger and J.W. Head, Planetary and Space Sciences, 50, 939–981 (2002).

    Article  Google Scholar 

  36. S.W. Ruff, P.R. Christensen, R.N. Clark, H.H. Kieffer, M.C. Malin, J.L. Bandfield, B.M. Jakosky, M.D. Lane, M.T. Mellon and M.A. Presley, J. Geophys. Res-Planets, 106, 23921–23927 (2001).

    Article  Google Scholar 

  37. H.G.M. Edwards, S.E. Jorge Villar, J. Parnell, C.S. Cockell and P. Lee, Analyst, 130, 917–923 (2005).

    Article  CAS  Google Scholar 

  38. S.E. Jorge Villar, H.G.M. Edwards and L.G. Benning, Astrobiology, Icarus, 184, 158–169 (2006).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this paper

Cite this paper

Edwards, H.G., Hargreaves, M.D. (2008). Raman Spectroscopy. In: Boeyens, J.C., Ogilvie, J. (eds) Models, Mysteries and Magic of Molecules. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5941-4_1

Download citation

Publish with us

Policies and ethics