Advertisement

Raman Spectroscopy

The biomolecular detection of life in extreme environments
  • Howell G.M. Edwards
  • Michael D. Hargreaves

Abstract

The strategic adaptation of extremophiles (organisms which can survive where humans cannot) to survival in hostile terrestrial environments depends critically upon their synthesis of protectant biomolecules in geological niches to combat low wavelength radiation insolation, desiccation, and extremes of temperature and pH.

Each year sees the discovery of novel geological scenarios in which organisms have successfully created a tenacious colonisation in “limits of life” habitats. Terrestrial analogues such as hot and cold deserts, volcanoes and geothermal springs provide models for the extraterrestrial study of the evolution of life in our Solar System – astrobiology. In particular, the current robotic exploration of the surface and subsurface of Mars, our neighbouring planet which has held ancient magical significance for our ancestors and is still shrouded in mysteries, is now indicative of the importance of a range of terrestrial scenarios which can be considered as Mars analogues. The next phase of Martian exploration must address the robotic search for extinct or extant life in the geological record, which is essential for the proposed human missions in the next two decades. A key factor in the armoury of remote analytical instrumentation that is now envisaged for inclusion on extended-range Mars landers and rovers is the identification of the chemical and biochemical protectants that might have been produced by extremophiles for survival in the Martian deserts. The molecular signatures evidenced from the Raman spectra of these key protectants will be fundamental for the detection of biological activity on Mars and the adoption of miniaturised Raman spectrometers for Martian exploration is now being seriously considered by NASA and ESA. In this context, the evaluation of prototype Raman spectroscopic instrumentation for the detection of molecules of relevance to a wide range of terrestrial extremophilic activity is now being addressed and forms the subject of this article. Exemplars from various geological scenarios in the Arctic and Antarctic cold deserts and from relevant hot desert habitats, such as volcanic geothermal springs and salt pan evaporites, will reinforce the tenet of this book – that the molecular studies of extremophilic models will be pivotal in the understanding of the magic and mysteries of evolution of life on Earth and the search for life on Mars

Keywords

Raman Spectrum RAMAN Spectroscopy Calcium Oxalate Monohydrate Calcium Oxalate Dihydrate Geothermal Spring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.K. Hartman, “A Traveller’s Guide to Mars”, Workman Publ., New York (2003).Google Scholar
  2. 2.
    W. Thomson, Nature, 4, 262 (1871).Google Scholar
  3. 3.
    C.P. McKay, Origins of Life & Evolution of the Biosphere, 27, 263 (1997).CrossRefGoogle Scholar
  4. 4.
    M.C. Malin and K.S. Edgett, Science, 288, 2330 (2000).CrossRefGoogle Scholar
  5. 5.
    M.H. Carr, “Water on Mars”, Oxford University Press, New York (1996).Google Scholar
  6. 6.
    D.D. Wynn-Williams and H.G.M. Edwards, Environmental UV Radiation:Biological Strategies for Protection and Avoidance, in “Astrobiology: The Quest for Life in the Solar System”, eds. G. Horneck and C. Baumstarck-Khan, Springer-Verlag, Berlin 244–260 (2000).Google Scholar
  7. 7.
    C.S. Cockell, Planetary and Space Sciences, 48, 203 (2000).CrossRefGoogle Scholar
  8. 8.
    R. Caricchidi, Astrobiology, 2, 281 (2002).CrossRefGoogle Scholar
  9. 9.
    C.S. Cockell and J. Knowland, Biol. Revs., 74, 311 (1999).CrossRefGoogle Scholar
  10. 10.
    D.D. Wynn-Williams and H.G.M. Edwards, Icarus, 144, 486 (2000).CrossRefGoogle Scholar
  11. 11.
    A. Brack, B. Fitton, F. Raulin and A. Wilson, “Exobiology in the Solar System and the Search for Life on Mars”, ESA Special Publication (SP-1231), ESA Publications Division, Noordwijk, The Netherlands (1999).Google Scholar
  12. 12.
    S.E. Jorge Villar and H.G.M. Edwards, Analytical & Bioanalytical Chemistry, 384, 100–113 (2006).Google Scholar
  13. 13.
    I.R. Lewis and H.G.M. Edwards, “Handbook of Raman Spectroscopy: From the Process Line to the Laboratory”, Marcel Dekker, New York (2000).Google Scholar
  14. 14.
    A. Ellery and D.D. Wynn-Williams, Astrobiology, 3, 565 (2003).CrossRefGoogle Scholar
  15. 15.
    H.G.M. Edwards, E.M. Newton, D.L. Dickensheets, D.D. Wynn-Williams, C. Schoen and C. Crowder, International J.Astrobiology, 1, 333, (2003).CrossRefGoogle Scholar
  16. 16.
    H.G.M. Edwards, E.M. Newton, D.L. Dickensheets and D.D. Wynn-Williams, Spectrochimica Acta, Part A, 59, 2277 (2003).CrossRefGoogle Scholar
  17. 17.
    D.L. Dickensheets, D.D. Wynn-Williams, H.G.M. Edwards, C. Schoen, C. Crowder and E.M. Newton, J.Raman Spectroscopy, 31, 633 (2000).CrossRefGoogle Scholar
  18. 18.
    A. Wang, L.A. Haskin, A.L. Lane, T.J. Wdowiak, S.W. Squyres, R.J. Wilson, L.E. Hovland, K.S. Manatt, N. Raouf and C.D. Smith, J. Geophys. Res. Planets, 108, (E1), Art. No.5005 (2003).Google Scholar
  19. 19.
    A. Wang and L.A. Haskin, Microbeam Analysis 2000, Proc. Inst. Phys. Conf. Series, 165, 103 (2000).Google Scholar
  20. 20.
    “ESA Progress Letter 4: Pasteur Instrument Payload for the Exo Mars Rover Mission”, ESA Publications Division, Noordwijk, The Netherlands (2004).Google Scholar
  21. 21.
    D.A. Long, “The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules”, John Wiley & Sons Ltd, Chichester, UK. (2002).Google Scholar
  22. 22.
    H.G.M. Edwards, Origins of Life & Evolution of the Biosphere, 34, 3 (2004).CrossRefGoogle Scholar
  23. 23.
    S.J. Wentworth and J.L. Gooding, Parent Planet Meteorites, 29, 860–863 (1994).Google Scholar
  24. 24.
    M.D. Lane and P.R. Christensen, Icarus, 135, 528 (1998).CrossRefGoogle Scholar
  25. 25.
    D.C. Catling, J. Geophys. Res-Planets, 104, 16453–16469 (1999).CrossRefGoogle Scholar
  26. 26.
    J.C. Bridges, D.C. Catling, J.M. Saxton, T.D. Swindle, I.C. Lyon and M.M. Grady, Space Sci. Revs., 96, 365–392 (2001).CrossRefGoogle Scholar
  27. 27.
    M.E.E. Madden, R.J. Bodnar and J.D. Rimstidt, Nature, 431, 821–823 (2004).CrossRefGoogle Scholar
  28. 28.
    D.T. Vaniman, D.L. Bish, S.J. Chipera, C.I. Fialips, J.W. Carey and W.C. Feldman, Nature, 431, 663–665 (2004).CrossRefGoogle Scholar
  29. 29.
    R.E. Arvidson, F. Poulet, J.P. Bibring, M. Wolff, A. Gendrin, R.V. Morris, J.J. Freeman, Y. Langevin, N. Mangold and G. Bellucci, Science, 307, 1587–1591 (2005).CrossRefGoogle Scholar
  30. 30.
    Y. Langevin, F. Poulet, J.P. Bibring and B. Gondet, Science, 307, 1584–1586 (2005).CrossRefGoogle Scholar
  31. 31.
    J.B. Murray, J.P. Muller, G. Neukum, S.C. Werner, S. van Gasselt, E. Hauber, W.J. Markiewicz, J.W. Head, B.W. Fong, D. Page, K.L. Mitchell and G. Portyankina, Nature, 434, 352–356 (2005).CrossRefGoogle Scholar
  32. 32.
    N.A. Cabrol, E.A. Grin and W.H. Pollard, Icarus, 145, 91–207 (2000).CrossRefGoogle Scholar
  33. 33.
    J.M. Moore and D.E. Willhelms, Icarus, 154, 258–276 (2001).CrossRefGoogle Scholar
  34. 34.
    D.A. Paige, Science, 307, 1575–1576 (2005).CrossRefGoogle Scholar
  35. 35.
    H. Hiesinger and J.W. Head, Planetary and Space Sciences, 50, 939–981 (2002).CrossRefGoogle Scholar
  36. 36.
    S.W. Ruff, P.R. Christensen, R.N. Clark, H.H. Kieffer, M.C. Malin, J.L. Bandfield, B.M. Jakosky, M.D. Lane, M.T. Mellon and M.A. Presley, J. Geophys. Res-Planets, 106, 23921–23927 (2001).CrossRefGoogle Scholar
  37. 37.
    H.G.M. Edwards, S.E. Jorge Villar, J. Parnell, C.S. Cockell and P. Lee, Analyst, 130, 917–923 (2005).CrossRefGoogle Scholar
  38. 38.
    S.E. Jorge Villar, H.G.M. Edwards and L.G. Benning, Astrobiology, Icarus, 184, 158–169 (2006).Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Howell G.M. Edwards
  • Michael D. Hargreaves

There are no affiliations available

Personalised recommendations