Nectar chemistry

  • Susan W. Nicolson
  • Robert W. Thornburg


Passerine Bird Sugar Composition Extrafloral Nectar Floral Nectar Nectar Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, L.S. (2000). The ecological significance of toxic nectar. Oikos, 91, 409-420.CrossRefGoogle Scholar
  2. Adler, L.S., & Irwin, R.E. (2005). Ecological costs and benefits of defenses in nectar. Ecol-ogy, 86, 2968-2978.Google Scholar
  3. Adler, L.S., & Wink, M. (2001). Transfer of quinolizidine alkaloids from hosts to hemipara-sites in two Castilleja-Lupinus associations: analysis of floral and vegetative tissues. Biochemical Systematics and Ecology, 29, 551-561.PubMedCrossRefGoogle Scholar
  4. Ahmad, S., Duval, D.L., Weinhold, L.C., & Pardini, R.S. (1991). Cabbage looper antioxidant enzymes: tissue specificity. Insect Biochemistry, 21, 563-572.CrossRefGoogle Scholar
  5. Ahmad, S., Pritsos, C.A., Bowen, S.M., Heisler, C.R., Blomquist, G.J., & Pardini, R.S. (1988). Antioxidant enzymes of larvae of the cabbage looper moth, Trichoplusia ni: sub-cellular distribution and activities of superoxide dismutase, catalase and glutathione reductase. Free Radical Research Communications, 4, 403-408.PubMedCrossRefGoogle Scholar
  6. Aizen, M.A. (2003). Down-facing flowers, humingbirds and rain. Taxon, 52, 675-680.CrossRefGoogle Scholar
  7. Alm, J., Ohnmeiss, T.E., Lanza, J., & Vriesenga, L. (1990). Preference of cabbage white but-terflies and honey bees for nectar that contains amino acids. Oecologia, 84, 53-57.CrossRefGoogle Scholar
  8. Andersen, P.C., Brodbeck, B.V., & Mizell, R.F. (1989). Metabolism of amino acids, organic acids and sugars extracted from the xylem fluid of four host plants by adult Homalodisca coagulata. Entomologica Experimentalis et Applicata, 50, 149-159.CrossRefGoogle Scholar
  9. Andersson, S. (2003). Antennal responses to floral scents in the butterflies Inachis io, Aglais urticae (Nymphalidae), and Gonepteryx rhamni (Pieridae). Chemoecology, 13, 13-20.CrossRefGoogle Scholar
  10. Ankri, S., & Mirelman, D. (1999). Antimicrobial properties of allicin from garlic. Microbes and Infection, 1, 125-129.PubMedCrossRefGoogle Scholar
  11. Ankri, S., Miron, T., Rabinkov, A., Wilchek, M., & Mirelman, D. (1997). Allicin from garlic strongly inhibits cysteine proteinases and cytopathic effects of Entamoeba histolytica. An-timicrobial Agents and Chemotherapy, 41, 2286-2288.Google Scholar
  12. Antonovics, J. (2005). Plant venereal diseases: insights from a messy metaphor. New Phy-tologist, 165, 71-80.CrossRefGoogle Scholar
  13. Baker, H.G. (1975). Sugar concentrations in nectars from hummingbird flowers. Biotropica, 7, 37-41.CrossRefGoogle Scholar
  14. Baker, H.G. (1978). Chemical aspects of the pollination biology of woody plants in the trop-ics. In: P.B. Tomlinson, & M.H. Zimmerman (Eds.), Tropical trees as living systems (pp. 57-82). Cambridge: Cambridge University Press.Google Scholar
  15. Baker, H.G., & Baker, I. (1973). Amino-acids in nectar and their evolutionary significance. Nature, 241, 543-545.CrossRefGoogle Scholar
  16. Baker, H.G., & Baker, I. (1975). Studies of nectar-constitution and pollinator-plant coevolu-tion. In:  L.E. Gilbert, & P.H. Raven (Eds.), Coevolution of animals and plants (pp. 100-140). Austin, Texas: University of Texas Press.Google Scholar
  17. Baker, H.G., & Baker, I. (1977). Intraspecific constancy of floral nectar amino acid comple-ments. Botanical Gazette, 138, 183-191.CrossRefGoogle Scholar
  18. Baker, H.G., & Baker, I. (1982a). Chemical constituents of nectar in relation to pollination mechanisms and phylogeny. In: M.H. Nitecki (Ed.), Biochemical aspects of evolutionary biology (pp. 131-171). Chicago: University of Chicago Press.Google Scholar
  19. Baker, H.G., & Baker, I. (1983a). A brief historical review of the chemistry of floral nectar. In: B. Bentley, & T. Elias (Eds.), The biology of nectaries (pp. 126-152). New York: Columbia University Press.Google Scholar
  20. Baker, H.G., & Baker, I. (1983b). Floral nectar sugar constituents in relation to pollinator type. In: C.E. Jones, & R.J. Little (Eds.), Handbook of experimental pollination biology (pp. 117-141). New York: Van Nostrand Reinhold.Google Scholar
  21. Baker, H.G., & Baker, I. (1986). The occurrence and significance of amino acids in floral nectar. Plant Systematics and Evolution, 151, 175-186.CrossRefGoogle Scholar
  22. Baker, H.G., Baker, I., & Hodges, S.A. (1998). Sugar composition of nectar and fruits con-sumed by birds and bats in the tropics and subtropics. Biotropica, 30, 559-586.CrossRefGoogle Scholar
  23. Baker, H.G., Opler, P.A., & Baker, I. (1978). A comparison of the amino acid complements of floral and extrafloral nectars. Botanical Gazette, 139, 322-332.CrossRefGoogle Scholar
  24. Baker, I., & Baker, H.G. (1982b). Some chemical constituents of floral nectars of Erythrina in relation to pollinators and systematics. Allertonia, 3, 25-37.Google Scholar
  25. Barbehenn, R.V., Bumgarner, S.L., Roosen, E.F., & Martin, M.M. (2001). Antioxidant de-fenses in caterpillars: role of the ascorbate-recycling system in the midgut lumen. Journal of Insect Physiology, 47, 349-357.PubMedCrossRefGoogle Scholar
  26. Barclay, R.M.R. (2002). Do plants pollinated by flying fox bats (Megachiroptera) provide an extra calcium reward in their nectar? Biotropica, 34, 168-171.Google Scholar
  27. Barker, R.J., & Lehner, Y. (1974). Acceptance and sustenance value of naturally occurring sugars fed to newly emerged adult workers of honey bees (Apis mellifera L.). Journal of Experimental Zoology, 187, 277-286.CrossRefGoogle Scholar
  28. Barker, R.J., Lehner, Y., & Kunzmann, M.R. (1980). Pesticides and honey bees: nectar and pollen contamination in alfalfa treated with dimethoate. Archives of Environmental Con-tamination and Toxicology, 9, 125-133.CrossRefGoogle Scholar
  29. Barnes, K., Nicolson, S.W., & van Wyk, B.-E. (1995). Nectar sugar composition in Erica. Biochemical Systematics and Ecology, 23, 419-423.CrossRefGoogle Scholar
  30. Bergström, G., Dobson, H.E.M., & Groth, I. (1995). Spatial fragrance patterns within the flow-ers of Ranunculus acris (Ranunculaceae). Plant Systematics and Evolution, 195, 221-242.CrossRefGoogle Scholar
  31. Bernardello, L., Galetto, L., & Forcone, A. (1999). Floral nectar chemical composition of some species from Patagonia. II. Biochemical Systematics and Ecology, 27, 779-790.CrossRefGoogle Scholar
  32. Bernardello, L., Galetto, L., & Rodriguez, I.G. (1994). Reproductive biology, variability of nectar features and pollination of Combretum fruticosum (Combretaceae) in Argentina. Botanical Journal of the Linnean Society, 114, 293-308.CrossRefGoogle Scholar
  33. Beutler, R. (1935). Nectar. Bee World, 24, 106-116, 128-136, 156-162.Google Scholar
  34. Birch, G.G., & Kemp, S.E. (1989). Apparent specific volumes and tastes of amino acids. Chemical Senses, 14, 249-258.CrossRefGoogle Scholar
  35. Bitterman, M.E., Menzel, R., Fietz, A., & Schäfer, S. (1983). Classical conditioning of pro-boscis extension in honeybees (Apis mellifera). Journal of Comparative Psychology, 97, 107-119.PubMedCrossRefGoogle Scholar
  36. Bleiweiss, R. (1998). Origin of hummingbird faunas. Biological Journal of the Linnean Soci-ety, 65, 77-97.CrossRefGoogle Scholar
  37. Bogdanov, S., Ruoff, K., & Persano Oddo, L. (2004). Physico-chemical methods for the char-acterisation of unifloral honeys: a review. Apidologie, 35, S4-S17.CrossRefGoogle Scholar
  38. Bolten, A.B., Feinsinger, P., Baker, H.G., & Baker, I. (1979). On the calculation of sugar concentration in flower nectar. Oecologia, 41, 301-304.CrossRefGoogle Scholar
  39. Borrell, B.J. (2004). Suction feeding in orchid bees (Apidae: Euglossini). Proceedings of the Royal Society of London B (Suppl.), 271, S164-S166.CrossRefGoogle Scholar
  40. Bozzo, G.G., Raghothama, K.G., & Plaxton, W.C. (2002). Purification and characterization of two secreted purple acid phosphatase isozymes from phosphate-starved tomato (Lycoper-sicon esculentum) cell cultures. European Journal of Biochemistry, 269, 6278-6286.PubMedCrossRefGoogle Scholar
  41. Bradshaw, S.D., & Bradshaw, F.J. (1999). Field energetics and the estimation of pollen and nectar intake in the marsupial honey possum, Tarsipes rostratus, in heathland habitats of South-Western Australia. Journal of Comparative Physiology B, 169, 569-580.CrossRefGoogle Scholar
  42. Brosemer, R.W., & Veerabhadrappa, P.S. (1965). Pathway of proline oxidation in insect flight muscle. Biochemica and Biophysica Acta, 110, 102-112.Google Scholar
  43. Brown, J.H., & Kodric-Brown, A. (1979). Convergence, competition, and mimicry in a tem-perate community of hummingbird-pollinated flowers. Ecology, 60, 1022-1035.CrossRefGoogle Scholar
  44. Bruneau, A. (1996). Phylogenetic and biogeographical patterns in Erythrina (Leguminosae: Phaseoleae) as inferred from morphological and chloroplast DNA characters. Systematic Botany, 21, 587-605.CrossRefGoogle Scholar
  45. Bruneau, A. (1997). Evolution and homology of bird pollination syndromes in Erythrina (Leguminosae). American Journal of Botany, 84, 54-71.CrossRefGoogle Scholar
  46. Bubán, T., Orosz-Kovács, Z., & Farkas, Á. (2003). The nectary as the primary site of infec-tion by Erwinia amylovora (Burr.) Winslow et al.: a mini review. Plant Systematics and Evolution, 238, 183-194.Google Scholar
  47. Buchmann, S.L. (1987). The ecology of oil flowers and their bees. Annual Review of Ecology and Systematics, 18, 343-369.CrossRefGoogle Scholar
  48. Bukatsch, F., & Wildner, G. (1956). Determination of ascorbic acid in nectar, pollen, parts of blossoms and fruits. Phyton, 7, 37-46.Google Scholar
  49. Búrquez, A., & Corbet, S.A. (1998). Dynamics of production and exploitation of nectar: les-sons from Impatiens glandulifera Royle. In: B. Bahadur (Ed.), Nectary biology (pp. 130-152). Nagpur, India: Dattsons.Google Scholar
  50. Carroll, A.B., Pallardy, S.G., & Galen, C. (2001). Drought stress, plant water status, and floral trait expression in fireweed, Epilobium angustifolium (Onagraceae). American Journal of Botany, 88, 438-446.PubMedCrossRefGoogle Scholar
  51. Carter, C., Graham, R.A., & Thornburg, R.W. (1999). Nectarin I is a novel, soluble germin-like protein expressed in the nectar of Nicotiana sp. Plant Molecular Biology, 41, 207-216.PubMedCrossRefGoogle Scholar
  52. Carter, C., Healy, R., O’Tool, N.M., Naqvi, S.M.S., Ren, G., Paark, S., Beattie, G.A., Horner, H.T., & Thornburg, R.W. (2007). Tobacco nectaries express a novel NADPH oxidase that is implicated in the defense of floral reproductive tissues against microorganisms. Plant Physiology, 143, 389-399.PubMedCrossRefGoogle Scholar
  53. Carter, C., Shafir, S., Yehonatan, L., Palmer, R.G., & Thornburg, R. (2006). A novel role for proline in plant floral nectars. Naturwissenschaften, 93, 72-79.PubMedCrossRefGoogle Scholar
  54. Carter, C., & Thornburg, R.W. (2000). Tobacco Nectarin I: purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defense of floral reproductive tissues. Journal of Biological Chemistry, 275, 36726-36733.PubMedCrossRefGoogle Scholar
  55. Carter, C., & Thornburg, R.W. (2004a). Is the nectar redox cycle a floral defense against microbial attack? Trends in Plant Science, 9, 320-324.PubMedCrossRefGoogle Scholar
  56. Carter, C., & Thornburg, R.W. (2004b). Tobacco Nectarin III is a bifunctional enzyme with monodehydroascorbate reductase and carbonic anhydrase activities. Plant Molecular Biol-ogy, 54, 415-425.CrossRefGoogle Scholar
  57. Carter, C., & Thornburg, R.W. (2004c). Tobacco Nectarin V is a flavin-containing berberine bridge enzyme-like protein with glucose oxidase activity. Plant Physiology, 134, 460-469.PubMedCrossRefGoogle Scholar
  58. Castellanos, M.C., Wilson, P., & Thomson, J.D. (2002). Dynamic nectar replenishment in flowers of Penstemon (Scrophulariaceae). American Journal of Botany, 89, 111-118.CrossRefGoogle Scholar
  59. Chalcoff, V.R., Aizen, M.A., & Galetto, L. (2006). Nectar concentration and composition of 26 species from the temperate forest of South America. Annals of Botany, 97, 413-421.PubMedCrossRefGoogle Scholar
  60. Chandra, S., & Low, P.S. (1995). Role of phosphorylation in elicitation of the oxidative burst in cultured soybean cells. Proceedings of the National Academy of Sciences USA, 92, 4120-4123.CrossRefGoogle Scholar
  61. Chapotin, S.M., Holbrook, N.M., Morse, S.R., & Gutiérrez, M.V. (2003). Water relations of tropical dry forest flowers: pathways for water entry and the role of extracellular polysac-charides. Plant, Cell and Environment, 26, 623-630.CrossRefGoogle Scholar
  62. Chittka, L., & Schürkens, S. (2001). Successful invasion of a floral market. Nature, 411, 653.Google Scholar
  63. Corbet, S.A. (1978). Bee visits and the nectar of Echium vulgare L. and Sinapsis alba L. Ecological Entomology, 3, 25-37.CrossRefGoogle Scholar
  64. Corbet, S.A. (1990). Pollination and the weather. Israel Journal of Botany, 39, 13-30. Google Scholar
  65. Corbet, S.A. (2003). Nectar sugar content: estimating standing crop and secretion rate in the field. Apidologie, 34, 1-10.CrossRefGoogle Scholar
  66. Corbet, S.A., & Delfosse, E.S. (1984). Honeybees and the nectar of Echium plantagineum L. in south-eastern Australia. Australian Journal of Ecology, 9, 125-139.CrossRefGoogle Scholar
  67. Corbet, S.A., Willmer, P.G., Beament, J.W.L., Unwin, D.M., & Prŷs-Jones, O.E. (1979). Post-secretory determinants of sugar concentration in nectar. Plant, Cell and Environment, 2, 293-308.CrossRefGoogle Scholar
  68. Cotti, T. (1962). Ueber die quantitative Messung der Phosphataseaktivitaet in Nektarien. Berichte der Schweizerischen Botanischen Gesellschaft, 72, 306-331.Google Scholar
  69. Crailsheim, K., & Leonhard, B. (1997). Amino acids in honeybee worker haemolymph. Amino Acids, 13, 141-153.CrossRefGoogle Scholar
  70. Crane, E. (1977). Dead bees under lime trees. Bee World, 58, 129-130.Google Scholar
  71. Cresswell, J.E., & Galen, C. (1991). Frequency-dependent selection and adaptive surfaces for floral character combinations: the pollination of Polemonium viscosum. American Natural-ist, 138, 1342-1353.CrossRefGoogle Scholar
  72. Cunningham, J.P., Moore, C.J., Zalucki, M.P., & West, S.A. (2004). Learning, odour prefer-ence and flower foraging in moths. Journal of Experimental Biology, 207, 87-94.PubMedCrossRefGoogle Scholar
  73. Dafni, A., Kevan, P.G., & Husband, B.C. (2005). Practical pollination biology. Cambridge, Ontario: Enviroquest.Google Scholar
  74. Dafni, H., Lensky, Y., & Fahn, A. (1988). Flower and nectar characteristics of nine species of Labiatae and their influence on honeybee visits. Journal of Apicultural Research, 27, 103-114.Google Scholar
  75. Davies, A.M.C. (1978). Proline in honey: an osmoregulatory hypothesis. Journal of Apicul-tural Research, 17, 227-233.Google Scholar
  76. Davis, A.R. (1997). Influence of floral visitation on nectar-sugar composition and nectary surface changes in Eucalyptus. Apidologie, 28, 27-42.CrossRefGoogle Scholar
  77. Davis, A.R., Pylatuik, J.D., Paradis, J.C., & Low, N.H. (1998). Nectar-carbohydrate produc-tion and composition vary in relation to nectary anatomy and location within individual flowers of several species of Brassicaceae. Planta, 205, 305-318.PubMedCrossRefGoogle Scholar
  78. de la Barrera, E., & Nobel, P.S. (2004). Nectar: properties, floral aspects, and speculations on origin. Trends in Plant Science, 9, 65-69.PubMedCrossRefGoogle Scholar
  79. Deachathai, S., Mahabusarakam, W., Phongpaichit, S., Taylor, W.C., Zhang, Y.J., & Yang, C.R. (2006). Phenolic compounds from the flowers of Garcinia dulcis. Phytochemistry, 67, 464-469.PubMedCrossRefGoogle Scholar
  80. del Baño, M.J., Lorente, J., Castillo, J., Benavente-Garcia, O., del Río, J.A., Ortuño, A., Quirin, K.W., & Gerard, D. (2003). Phenolic diterpenes, flavones, and rosmarinic acid dis-tribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Antioxidant activity. Journal of Agricultural and Food Chemistry, 51, 4247-4253.PubMedCrossRefGoogle Scholar
  81. del Pozo, J.C., Allona, I., Rubio, V., Leyva, A., de la Peña, A., Aragoncillo, C., & Paz-Ares, J. (1999). A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions. Plant Journal, 19, 579-589.PubMedCrossRefGoogle Scholar
  82. Dethier, V.G. (1976). The hungry fly. Cambridge, Massachusetts: Harvard University Press. Detzel, A., & Wink, M. (1993). Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology, 4, 8-18.Google Scholar
  83. Devoto, M., Montaldo, N.H., & Medan, D. (2006). Mixed hummingbird: long-proboscid-fly pollination in “ornithophilous” Embothrium coccineum (Proteaceae) along a rainfall gradi-ent in Patagonia, Argentina. Austral Ecology, 31, 512-519.CrossRefGoogle Scholar
  84. Dress, W.J., Newell, S.J., Nastase, A.J., & Ford, J.C. (1997). Analysis of amino acids in nec-tar from pitchers of Sarracenia purpurea (Sarraceniaceae). American Journal of Botany, 84, 1701-1706.CrossRefGoogle Scholar
  85. Dudareva, N., D’Auria, J.C., Hee Nam, K., Raguso, R.A., & Pichersky, E. (1998). Acetyl-CoA: benzylalcohol acetyltransferase—an enzyme involved in floral scent production in Clarkia breweri. Plant Journal, 14, 297-304.PubMedCrossRefGoogle Scholar
  86. Ecroyd, C.E., Franich, R.A., Kroese, H.W., & Steward, D. (1995). Volatile constituents of Dactylanthus taylorii flower nectar in relation to flower pollination and browsing by ani-mals. Phytochemistry, 40, 1387-1389.CrossRefGoogle Scholar
  87. Ehlers, B.K., & Olesen, J.M. (1997). The fruit-wasp route to toxic nectar in Epipactis or-chids? Flora, 192, 223-229.Google Scholar
  88. Elisens, W.J., & Freeman, C.E. (1988). Floral nectar sugar composition and pollinator type among New World genera in tribe Antirrhineae (Scrophulariaceae). American Journal of Botany, 75, 971-978.CrossRefGoogle Scholar
  89. Erhardt, A., Rusterholz, H.-P., & Stőcklin, J. (2005). Elevated carbon dioxide increases nectar production in Epilobium angustifolium L. Oecologia, 146, 311-317.PubMedCrossRefGoogle Scholar
  90. Faegri, K., & van der Pijl, L. (1979). The principles of pollination ecology, 3rd edn. Oxford: Pergamon Press. Google Scholar
  91. Fahn, A. (2000). Structure and function of secretory cells. Advances in Botanical Research, 31, 37-75.CrossRefGoogle Scholar
  92. Felton, G.W., & Summers, C.B. (1995). Antioxidant systems in insects. Archives of Insect Biochemistry and Physiology, 29, 187-197.PubMedCrossRefGoogle Scholar
  93. Ferreres, F., Andrade, P., Gil, M.I., & Tomás-Barberán, F.A. (1996). Floral nectar phenolics as biochemical markers for the botanical origin of heather honey. Zeitschrift für Le-bensmitteluntersuchung und -Forschung, 202, 40-44.CrossRefGoogle Scholar
  94. Fleming, P.A., Hartman Bakken, B., Lotz, C.N., & Nicolson, S.W. (2004). Concentration and temperature effects on sugar intake and preferences in a sunbird and a hummingbird. Functional Ecology, 18, 223-232.CrossRefGoogle Scholar
  95. Forcone, A., Galetto, L., & Bernardello, L. (1997). Floral nectar chemical composition of some species from Patagonia. Biochemical Systematics and Ecology, 25, 395-402.CrossRefGoogle Scholar
  96. Fowden, L., Lea, P.J., & Bell, E.A. (1979). The nonprotein amino acids of plants. Advances in Enzymology and Related Areas of Molecular Biology, 50, 117-175.PubMedGoogle Scholar
  97. Frankie, G.W., Haber, W.A., Baker, I., & Baker, H.G. (1982). A possible chemical explana-tion for differential flower foraging by anthoporid bees among individuals of Tabebuia rosea in a neotropical dry forest. Brenesia, 20, 397-402.Google Scholar
  98. Freeman, C.E., & Head, K.C. (1990). Temperature and sucrose composition of floral nectars in Ipomopsis longiflora under field conditions. Southwestern Naturalist, 35, 423-426.CrossRefGoogle Scholar
  99. Freeman, C.E., Reid, W.H., Becvar, J.E., & Scogin, R. (1984). Similarity and apparent con-vergence in the nectar-sugar composition of some hummingbird-pollinated flowers. Botanical Gazette, 145, 132-135.CrossRefGoogle Scholar
  100. Freeman, C.E., & Wilken, D.H. (1987). Variation in nectar sugar composition at the intraplant level in Ipomopsis longiflora (Polemoniaceae). American Journal of Botany, 74, 1681-1689.CrossRefGoogle Scholar
  101. Galen, C., Sherry, R.A., & Carroll, A.B. (1999). Are flowers physiological sinks or faucets? Costs and correlates of water use by flowers of Polemonium viscosum. Oecologia, 118, 461-470.CrossRefGoogle Scholar
  102. Galetto, L., & Bernardello, G. (2003). Nectar sugar composition in angiosperms from Chaco and Patagonia (Argentina): an animal visitor’s matter? Plant Systematics and Evolution, 238, 69-86.Google Scholar
  103. Galetto, L., & Bernardello, G. (2004). Floral nectaries, nectar production dynamics and chemical composition in six Ipomoea species (Convolvulaceae) in relation to pollinators. Annals of Botany, 94, 269-280.PubMedCrossRefGoogle Scholar
  104. Galetto, L., Bernardello, G., Isele, I.C., Vesprini, J., Speroni, G., & Berduc, A. (2000). Re-productive biology of Erythrina crista-galli (Fabaceae). Annals of the Missouri Botanical Garden, 87, 127-145.CrossRefGoogle Scholar
  105. Galetto, L., Bernardello, G., & Sosa, C.A. (1998). The relationship between floral nectar composition and visitors in Lycium (Solanaceae) from Argentina and Chile: what does it reflect? Flora, 193, 303-314.Google Scholar
  106. Galetto, L., & Bernardello, L.M. (1992). Extrafloral nectaries that attract ants in Bromeli-aceae: structure and nectar composition. Canadian Journal of Botany, 70, 1101-1106.CrossRefGoogle Scholar
  107. Gardener, M.C., & Gillman, M.P. (2001a). Analyzing variability in nectar amino acids: com-position is less variable than concentration. Journal of Chemical Ecology, 27, 2545-2558.PubMedCrossRefGoogle Scholar
  108. Gardener, M.C., & Gillman, M.P. (2001b). The effects of soil fertilizer on amino acids in the floral nectar of corncockle, Agrostemma githago (Caryophyllaceae). Oikos, 92, 101-106.CrossRefGoogle Scholar
  109. Gardener, M.C., & Gillman, M.P. (2002). The taste of nectar—a neglected area of pollination ecology. Oikos, 98, 552-557.CrossRefGoogle Scholar
  110. Gass, C.L., & Roberts, W.M. (1992). The problem of temporal scale in optimization: three contrasting views of hummingbird visits to flowers. American Naturalist, 140, 829-853.PubMedCrossRefGoogle Scholar
  111. Gil, M.I., Ferreres, F., Ortiz, A., Subra, E., & Tomás-Barberán, F.A. (1995). Plant phenolic metabolites and floral origin of rosemary honey. Journal of Agricultural and Food Chemistry, 43, 2833-2838.CrossRefGoogle Scholar
  112. Gottsberger, G., Arnold, T., & Linskens, H.F. (1990). Variation in floral nectar amino acids with aging of flowers, pollen contamination, and flower damage. Israel Journal of Botany, 39, 167-176.Google Scholar
  113. Gottsberger, G., Schrauwen, J., & Linskens, H.F. (1984). Amino acids and sugars in nectar, and their putative evolutionary significance. Plant Systematics and Evolution, 145, 55-77.CrossRefGoogle Scholar
  114. Grant, V. (1994). Historical development of ornithophily in the western North American flora. Proceedings of the National Academy of Sciences USA, 91, 10407-10411.CrossRefGoogle Scholar
  115. Griebel, C., & Hess, G. (1940). The vitamin C content of flower nectar of certain Labiatae. Zeitschrift für Untersuchung der Lebensmittel, 79, 168-171.CrossRefGoogle Scholar
  116. Gryj, E., Martínez del Rio, C., & Baker, I. (1990). Avian pollination and nectar use in Com-bretum fruticosum (Loefl.). Biotropica, 22, 266-271.CrossRefGoogle Scholar
  117. Guerrant, E.O., & Fiedler, P.L. (1981). Flower defenses against nectar-pilferage by ants. Biotropica (suppl. Reproductive Botany), 13, 25-33.Google Scholar
  118. Hagler, J.R., & Buchmann, S.L. (1993). Honey bee (Hymenoptera: Apidae) foraging re-sponses to phenolic-rich nectars. Journal of the Kansas Entomological Society, 66, 223-230.Google Scholar
  119. Hagler, J.R., Cohen, A.C., & Loper, G.M. (1990). Production and composition of onion nec-tar and honey bee (Hymenoptera: Apidae) foraging activity in Arizona. Environmental Entomology, 19, 327-331.Google Scholar
  120. Halliwell, B., & Gutteridge, J.M.C. (1999). Free radicals in biology and medicine. New York: Oxford University Press.Google Scholar
  121. Hammer, M., & Menzel, R. (1995). Learning and memory in the honeybee. Journal of Neuro-science, 15, 1617-1630.Google Scholar
  122. Hanny, B.W., & Elmore, C.D. (1974). Amino acid composition of cotton nectar. Journal of Agricultural and Food Chemistry, 22, 476-478.CrossRefGoogle Scholar
  123. Hansen, D.M., Olesen, J.M., Mione, T., Johnson, S.D., & Muller, C.B. (2007). Coloured nectar: distribution, ecology, and evolution of an enigmatic floral trait. Biological Reviews, 82, 83-111.PubMedCrossRefGoogle Scholar
  124. Hansen, K., Wacht, S., Seebauer, H., & Schnuch, M. (1998). New aspects of chemoreception in flies. Annals of the New York Academy of Sciences, 855, 143-147.PubMedCrossRefGoogle Scholar
  125. Harder, L.D. (1986). Effects of nectar concentration and flower depth on flower handling efficiency of bumble bees. Oecologia, 69, 309-315.CrossRefGoogle Scholar
  126. Hazslinsky, B. (1956). Poisonous honey from deadly nightshade. Zeitschrift für Bienenfor-schung, 3, 93-96.Google Scholar
  127. Heil, M., Rattke, J., & Boland, W. (2005). Postsecretory hydrolysis of nectar sucrose and specialization in ant/plant mutualism. Science, 308, 560-563.PubMedCrossRefGoogle Scholar
  128. Heinrich, G. (1989). Analysis of cations in nectars by means of a laser microprobe mass ana-lyser (LAMMA). Beiträge zur Biologie der Pflanzen, 64, 293-308.Google Scholar
  129. Herrera, C.M., Pérez, R., & Alonso, C. (2006). Extreme intraplant variation in nectar sugar com-position in an insect-pollinated perennial herb. American Journal of Botany, 93, 575-581.CrossRefGoogle Scholar
  130. Heyneman, A.J. (1983). Optimal sugar concentrations of floral nectars: dependence on sugar intake efficiency and foraging costs. Oecologia, 60, 198-213.CrossRefGoogle Scholar
  131. Hiebert, S.M., & Calder, W.A. (1983). Sodium, potassium, and chloride in floral nectars: energy-free contributions to refractive index and salt balance. Ecology, 64, 399-402.CrossRefGoogle Scholar
  132. Hilder, V.A., Powell, K.S., Gatehouse, A.M.R., Gatehouse, J.A., Gatehouse, L.N., Shi, Y., Hamilton, W.D.O., Merryweather, A., Newell, C.A., Timans, J.C., Peumans, W.J., Van Damme, E., & Boulter, D. (1995). Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Research, 4, 18-25.CrossRefGoogle Scholar
  133. Holl, K.D. (1995). Nectar resources and their influence on butterfly communities on re-claimed coal surface mines. Restoration Ecology, 3, 76-85.CrossRefGoogle Scholar
  134. Honda, K., Ômura, H., & Hayashi, N. (1998). Identification of floral volatiles from Ligustrum japonicum that stimulate flower-visiting by cabbage buttterfly, Pieris rapae. Journal of Chemical Ecology, 24, 2167-2180.CrossRefGoogle Scholar
  135. Horner, H.T., Healy, R.A., Ren, G., Fritz, D., Seames, C., & Thornburg, R.W. (2007). Amyloplast to chromoplast conversion in developing ornamental tobacco floral nectaries provides sugar for nectar and antioxidants for protection. American Journal of Botany, 94, 12-24.CrossRefGoogle Scholar
  136. Hrassnigg, N., Leonhard, B., & Crailsheim, K. (2003). Free amino acids in the haemolymph of honey bee queens (Apis mellifera L.). Amino Acids, 24, 205-212.PubMedGoogle Scholar
  137. Huang, S.-Q., Takahashi, Y., & Dafni, A. (2002). Why does the flower stalk of Pulsatilla cernua (Ranunculaceae) bend during anthesis? American Journal of Botany, 89, 1599-1603.CrossRefGoogle Scholar
  138. Inouye, D.W., Favre, N.D., Lanum, J.A., Levine, D.M., Meyers, J.B., Roberts, M.S., Tsao, F.C., & Wang, Y.-Y. (1980). The effects of nonsugar nectar constituents on estimates of nectar energy content. Ecology, 61, 992-996.CrossRefGoogle Scholar
  139. Inouye, D.W., & Waller, G.D. (1984). Responses of honeybees (Apis mellifera) to amino acid solutions mimicking floral nectars. Ecology, 65, 618-625.CrossRefGoogle Scholar
  140. Jackson, S., & Nicolson, S.W. (2002). Xylose as a nectar sugar: from biochemistry to ecol-ogy. Comparative Biochemistry and Physiology B, 131, 613-620.CrossRefGoogle Scholar
  141. Jakubska, A., Przado, D., Steininger, M., Aniol-Kwiatkowska, J., & Kadej, M. (2005). Whydo pollinators become “sluggish”? Nectar chemical constituents from Epipactis helle-borine(L.) Crantz(Orchidaceae). Applied Ecology and Environmental Research,3,29-38.Google Scholar
  142. Jaycox, E.R. (1964). Effect on honeybees of nectar from systemic insecticide-treated plants. Journal of Economic Entomology, 57, 31-35.Google Scholar
  143. Jeffrey, D.C., Arditti, J., & Koopowitz, H. (1970). Sugar content in floral and extrafloral exu-dates of orchids: pollination, myrmecology and chemotaxonomy implication. New Phytologist, 69, 187-195.CrossRefGoogle Scholar
  144. Johnson, S.A., Nicolson, S.W., & Jackson, S. (2006a). Nectar xylose metabolism in a rodent pollinator (Aethomys namaquensis): defining the role of gastrointestinal microflora using 14C-labelled xylose. Physiological and Biochemical Zoology, 79, 159-168.CrossRefGoogle Scholar
  145. Johnson, S.D., Hargreaves, A.L., & Brown, M. (2006b). Dark bitter-tasting nectar functions as a filter of flower visitors in a bird-pollinated plant. Ecology, 87, 2709-2716.CrossRefGoogle Scholar
  146. Johnson, S.D., Pauw, A., & Midgley, J. (2001). Rodent pollination in the African lily Mas-sonia depressa (Hyacinthaceae). American Journal of Botany, 88, 1768-1773.CrossRefGoogle Scholar
  147. Juergens, A. (2004). Nectar sugar composition and floral scent compounds of diurnal and nocturnal Conophytum species (Aizoaceae). South African Journal of Botany, 70, 191-205.Google Scholar
  148. Kaczorowski, R.L., Gardener, M.C., & Holtsford, T.P. (2005). Nectar traits in Nicotiana sec-tion Alatae (Solanaceae) in relation to floral traits, pollinators, and mating system. American Journal of Botany, 92, 1270-1283.CrossRefGoogle Scholar
  149. Kearns, C.A., & Inouye, D.W. (1993). Techniques for pollination biologists. Boulder, Colo-rado: University Press of Colorado.Google Scholar
  150. Kevan, P.G. (1976). Fluorescent nectar. Science, 194, 341-342.PubMedCrossRefGoogle Scholar
  151. Kingsolver, J.G., & Daniel, T.L. (1983). Mechanical determinants of nectar feeding strategy in hummingbirds: energetics, tongue morphology, and licking behavior. Oecologia, 60, 214-226.CrossRefGoogle Scholar
  152. Kingsolver, J.G., & Daniel, T.L. (1995). Mechanics of food handling by fluid-feeding insects. In: R.F. Chapman & G. de Boer (Eds.), (pp. 32-73). Regulatory mechanisms in insect feeding New York: Chapman & Hall.Google Scholar
  153. Kleijn, D., & Snoeijing, G.I.J. (1997). Field boundary vegetation and the effects of agro-chemical drift: botanical change caused by low levels of herbicide and fertilizer. Journal of Applied Ecology, 34, 1413-1425.CrossRefGoogle Scholar
  154. Klinkhamer, P.G.L., & De Jong, T.J. (1993). Attractiveness to pollinators: a plant’s dilemma. Oikos, 66, 180-184.CrossRefGoogle Scholar
  155. Knudsen, J.T., Tollsten, L., & Bergstrőm, L.G. (1993). Floral scents. A checklist of volatile compounds isolated by head-space techniques. Phytochemistry, 33, 253-280.CrossRefGoogle Scholar
  156. Koptur, S. (1994). Floral and extrafloral nectars of Costa Rican Inga trees: a comparison of their constituents and composition. Biotropica, 26, 276-284.CrossRefGoogle Scholar
  157. Krenn, H.W., Plant, J.D., & Szucsich, N.U. (2005). Mouthparts of flower-visiting insects. Arthropod Structure and Development, 34, 1-40.CrossRefGoogle Scholar
  158. Kronestedt-Robards, E.C., Greger, M., & Robards, A.W. (1989). The nectar of the Strelitzia reginae flower. Physiologia Plantarum, 77, 341-346.CrossRefGoogle Scholar
  159. Landolt, P.J., & Lenczewski, B. (1993). Lack of evidence for the toxic nectar hypothesis: a plant alkaloid did not deter nectar feeding by Lepidoptera. Florida Entomologist, 76, 556-566.Google Scholar
  160. Langenberger, M.W., & Davis, A.R. (2002). Temporal changes in floral nectar production, reabsorption and composition associated with dichogamy in annual caraway (Carum carvi; Apiaceae). American Journal of Botany, 89, 1588-1598.CrossRefGoogle Scholar
  161. Lanza, J., Smith, G.C., Sack, S., & Cash, A. (1995). Variation in nectar volume and composi-tion of Impatiens capensis at the individual, plant, and population levels. Oecologia, 102, 113-119.Google Scholar
  162. Leiss, K.A., & Klinkhamer, P.G.L. (2005). Genotype by environment interactions in the nec-tar production of Echium vulgare. Functional Ecology, 19, 454-459.CrossRefGoogle Scholar
  163. Li, G., Bishop, K.J., & Hall, T.C. (2001). De novo activation of the beta-phaseolin promoter by phosphatase or protein synthesis inhibitors. Journal of Biological Chemistry, 276, 2062-2068.PubMedGoogle Scholar
  164. Liu, F., He, J., & Fu, W. (2005). Highly controlled nest homeostasis of honey bees helps de-activate phenolics in nectar. Naturwissenschaften, 92, 297-299.PubMedCrossRefGoogle Scholar
  165. Loper, G.M., Waller, G.D., & Berdel, R.L. (1976). Effect of flower age on sucrose content in nectar of citrus. HortScience, 11, 416-417.Google Scholar
  166. Lord, K.A., May, M.A., & Stevenson, J.H. (1968). The secretion of the systemic insecticides dimethoate and phorate into nectar. Annals of Applied Biology, 61, 19-27.PubMedCrossRefGoogle Scholar
  167. Lotz, C.N., & Nicolson, S.W. (1996). Sugar preferences of a nectarivorous passerine bird, the lesser double-collared sunbird (Nectarinia chalybea). Functional Ecology, 10, 360-365.CrossRefGoogle Scholar
  168. Lüttge, U. (1961). Über die Zusammensetzung des Nektars und den Mechanismus seiner Sekretion. I. Planta, 56, 189-212.CrossRefGoogle Scholar
  169. Lüttge, U. (1962). Über die Zusammensetzung des Nektars und den Mechanismus seiner Sekretion. II. Planta, 59, 108-114.CrossRefGoogle Scholar
  170. Martínez del Rio, C., Baker, H.G., & Baker, I. (1992). Ecological and evolutionary implica-tions of digestive processes: bird preferences and the sugar constituents of floral nectar and fruit pulp. Experientia, 48, 544-551.CrossRefGoogle Scholar
  171. Martínez del Rio, C., Schondube, J.E., McWhorter, T.J., & Herrera, L.G. (2001). Intake re-sponses in nectar feeding birds: digestive and metabolic causes, osmoregulatory consequences, and coevolutionary effects. American Zoologist, 41, 902-915.CrossRefGoogle Scholar
  172. Martins, D.J., & Johnson, S.D. (2007). Hawkmoth pollination of Aerangis and Rangaeris (Orchidaceae) in Kenya, with special reference to nectar sugar concentration gradients in the floral spurs. American Journal of Botany, in press.Google Scholar
  173. Masters, A.R. (1991). Dual role of pyrrolizidine alkaloids in nectar. Journal of Chemical Ecology, 17, 195-205.CrossRefGoogle Scholar
  174. Mathlouthi, M., & Génotelle, J. (1995). Rheological properties of sucrose solutions and sus-pensions. In: M. Mathlouthi & P. Reiser (Ed.), Sucrose properties and applications (pp. 126-154). London: Blackie Academic & Professional.Google Scholar
  175. McKenna, M.A., & Thomson, J.D. (1988). A technique for sampling and measuring small amounts of floral nectar. Ecology, 69, 1306-1307.CrossRefGoogle Scholar
  176. McTavish, H.S., Davies, N.W., & Menary, R.C. (2000). Emission of volatiles from brown Boronia flowers: some comparative observations. Annals of Botany, 86, 347-354.CrossRefGoogle Scholar
  177. Metzler, D.E. (2003). Biochemistry: the chemical reactions of living cells, 2nd edn. San Diego, California: Academic Press. Google Scholar
  178. Micheu, S., Crailsheim, K., & Leonhard, B. (2000). Importance of proline and other amino acids during honeybee flight—Apis mellifera carnica (Pollmann). Amino Acids, 18, 157-175.PubMedCrossRefGoogle Scholar
  179. Mullin, C.A., Alfatafta, A.A., Harman, J.L., Serino, A.A., & Everett, S.L. (1991). Corn root-worm feeding on sunflower and other Compositae: influence of floral terpenoid and phenolic factors. In: P.A. Hedin (Ed.), Naturally occurring pest bioregulators (pp. 278-292). Washington DC: American Chemical Society.CrossRefGoogle Scholar
  180. Naef, R., Jaquier, A., Velluz, A., & Bachofen, B. (2004). From the linden flower to linden honey—volatile constituents of linden nectar, the extract of bee-stomach and ripe honey. Chemistry and Biodiversity, 1, 1870-1879.PubMedCrossRefGoogle Scholar
  181. Naqvi, S.M.S., Harper, A., Carter, C., Ren, G., Guirgis, A., York, W.S., & Thornburg, R.W. (2005). Nectarin IV, a potent endoglucanase inhibitor secreted into the nectar of ornamen-tal tobacco plants. Isolation, cloning and characterization. Plant Physiology, 139, 1389-1400.PubMedCrossRefGoogle Scholar
  182. Natale, D., Mattiacci, L., Hern, A., Pasqualini, E., & Dorn, S. (2003). Response of female Cydia molesta (Lepidoptera: Tortricidae) to plant derived volatiles. Bulletin of Entomo-logical Research, 93, 335-342.Google Scholar
  183. Nepi, M., Guarnieri, M., & Pacini, E. (2001). Nectar secretion, reabsorption, and sugar com-position in male and female flowers of Cucurbita pepo. International Journal of Plant Sciences, 162, 353-358.CrossRefGoogle Scholar
  184. Nicolson, S.W. (1990). Osmoregulation in a nectar-feeding insect, the carpenter bee Xylocopa capitata: water excess and ion conservation. Physiological Entomology, 15, 433-441.Google Scholar
  185. Nicolson, S.W. (1994). Eucalyptus nectar: production, availability, composition and osmotic consequences for the larva of the eucalypt nectar fly, Drosophila flavohirta. South African Journal of Science, 90, 75-79.Google Scholar
  186. Nicolson, S.W. (1998). The importance of osmosis in nectar secretion and its consumption by insects. American Zoologist, 38, 418-425.Google Scholar
  187. Nicolson, S.W. (2002). Pollination by passerine birds: why are the nectars so dilute? Com-parative Biochemistry and Physiology B, 131, 645-652.CrossRefGoogle Scholar
  188. Nicolson, S.W. (2007). Nectar consumers. In: S.W. Nicolson, M. Nepi, & E. Pacini (Eds.), Nectaries and nectar (pp. 289-342). Dordrecht: Springer.CrossRefGoogle Scholar
  189. Nicolson, S.W., & Fleming, P.A. (2003). Nectar as food for birds: the physiological conse-quences of drinking dilute sugar solutions. Plant Systematics and Evolution, 238, 139-153.Google Scholar
  190. Nicolson, S.W., & Nepi, M. (2005). Dilute nectar in dry atmospheres: nectar secretion pat-terns in Aloe castanea (Asphodelaceae). International Journal of Plant Sciences, 166, 227-233.CrossRefGoogle Scholar
  191. Nicolson, S.W., & van Wyk, B.-E. (1998). Nectar sugars in Proteaceae: patterns and proc-esses. Australian Journal of Botany, 46, 489-504.CrossRefGoogle Scholar
  192. Nicolson, S.W., & W.-Worswick, P.V. (1990). Sodium and potassium concentrations in floral nectars in relation to foraging by honey bees. South African Journal of Zoology, 25, 93-96.Google Scholar
  193. Nobel, P.S. (1977). Water relations of flowering of Agave deserti. Botanical Gazette, 138, 1-6.CrossRefGoogle Scholar
  194. Olesen, J.M., Rønsted, N., Tolderlund, U., Cornett, C., Mølgaard, P., Madsen, J., Jones, C.G., & Olsen, C.E. (1998). Mauritian red nectar remains a mystery. Nature, 393, 529-529.CrossRefGoogle Scholar
  195. Omand, E., & Dethier, V.G. (1969). An electrophysiological analysis of the action of carbo-hydrates on the sugar receptor of the blowfly. Proceedings of the National Academy of Sciences USA, 62, 136-143.CrossRefGoogle Scholar
  196. Ordano, M., & Ornelas, J.F. (2004). Generous-like flowers: nectar production in two epi-phytic bromeliads and a meta-analysis of removal effects. Oecologia, 140, 495-505.PubMedCrossRefGoogle Scholar
  197. Ozoe, Y., Akamatsu, M., Higata, T., Ikeda, I., Mochida, K., Koike, K., Ohmoto, T., & Nikaido, T. (1999). Interactions of picrodendrins and related terpenoids with ionotropic GABA receptors of mammals and insects. Pesticide Science, 55, 665-666.CrossRefGoogle Scholar
  198. Pacini, E., & Nepi, M. (2007). Nectar production and presentation. In: S.W. Nicolson, M. Nepi, & E. Pacini (Eds.), Nectaries and nectar (pp. 167-214). Dordrecht: Springer.CrossRefGoogle Scholar
  199. Passreiter, C.M., & Isman, M.B. (1997). Antifeedant bioactivity of sesquiterpene lactones from Neurolaena lobata and their antagonism by gamma-aminobutyric acid. Biochemical Systematics and Ecology, 25, 371-377.CrossRefGoogle Scholar
  200. Pate, J., Shedley, E., Arthur, D., & Adams, M. (1998). Spatial and temporal variations in phloem sap composition of plantation-grown Eucalyptus globulus. Oecologia, 117, 312-322.CrossRefGoogle Scholar
  201. Pate, J.S., Peoples, M.B., Storer, P.J., & Atkins, C.A. (1985). The extrafloral nectaries of cowpea (Vigna unguiculata (L.) Walp.) II. Nectar composition, origin of nectar solutes, and nectary functioning. Planta, 166, 28-38.CrossRefGoogle Scholar
  202. Patiño, S., & Grace, J. (2002). The cooling of convolvulaceous flowers in a tropical environ-ment. Plant, Cell and Environment, 25, 41-51.CrossRefGoogle Scholar
  203. Paul, J., & Roces, F. (2003). Fluid intake rates in ants correlate with their feeding habits. Journal of Insect Physiology, 49, 347-357.PubMedCrossRefGoogle Scholar
  204. Percival, M.S. (1961). Types of nectar in angiosperms. New Phytologist, 60, 235-281.CrossRefGoogle Scholar
  205. Pérez-Giraldo, C., Cruz-Villalón, G., Sánchez-Silos, R., Martínez-Rubio, R., Blanco, M.T., & Gómez-García, A.C. (2003). In vitro activity of allicin against Staphylococcus epidermiis and influence of subinhibitory concentrations on biofilm formation. Journal of Applied Microbiology, 95, 709-711.PubMedCrossRefGoogle Scholar
  206. Perret, M., Chautems, A., Spichiger, R., Kite, G., & Savolainen, V. (2003). Systematics and evolution of tribe Sinningieae (Gesneriaceae): evidence from phylogenetic analyses of six plastid DNA regions and nuclear ncpGS. American Journal of Botany, 90, 445-460.CrossRefGoogle Scholar
  207. Perret, M., Chautems, A., Spichiger, R., Peixoto, M., & Savolainen, V. (2001). Nectar sugar composition in relation to pollination syndromes in Sinningieae (Gesneriaceae). Annals of Botany, 87, 267-273.CrossRefGoogle Scholar
  208. Petanidou, T. (2005). Sugars in Mediterranean floral nectars: an ecological and evolutionary approach. Journal of Chemical Ecology, 31, 1065-1088.PubMedCrossRefGoogle Scholar
  209. Petanidou, T. (2007). Ecological and evolutionary aspects of floral nectars in Mediterranean habitats. In: S.W. Nicolson, M. Nepi, & E. Pacini (Eds.), Nectaries and nectar (pp. 343-375). Dordrecht: Springer.CrossRefGoogle Scholar
  210. Petanidou, T., Goethals, V., & Smets, E. (2000). Nectary structure of Labiatae in relation to their nectar secretion and characteristics in a Mediterranean shrub community—does flowering time matter? Plant Systematics and Evolution, 225, 103-118.CrossRefGoogle Scholar
  211. Petanidou, T., van Laere, A., Ellis, W.N., & Smets, E. (2006). What shapes amino acid and sugar composition in Mediterranean floral nectars? Oikos, 115, 155-169.CrossRefGoogle Scholar
  212. Petanidou, T., Van Laere, A.J., & Smets, E. (1996). Change in floral nectar components from fresh to senescent flowers of Capparis spinosa L.(Capparidaceae), a nocturnally flowering Mediterranean shrub. Plant Systematics and Evolution, 199, 79-92.CrossRefGoogle Scholar
  213. Petit, S., & Freeman, C.E. (1997). Nectar production of two sympatric species of columnar cacti. Biotropica, 29, 175-183.CrossRefGoogle Scholar
  214. Peumans, W.J., Smeets, K., Van Nerum, K., Van Leuven, F., & Van Damme, E.J.M. (1997). Lectin and alliinase are the predominant proteins in nectar from leek (Allium porrum L.) flowers. Planta, 201, 298-302.PubMedCrossRefGoogle Scholar
  215. Pichersky, E., & Gershenzon, J. (2002). The formation and function of plant volatiles: per-fumes for pollinator attraction and defense. Current Opinion in Plant Biology, 5, 237-243.PubMedCrossRefGoogle Scholar
  216. Pivnick, K.A., & McNeil, J.N. (1985). Effects of nectar concentration on butterfly feeding: measured feeding rates for Thymelicus lineola (Lepidoptera: Hesperiidae) and a general feeding model for adult Lepidoptera. Oecologia, 66, 226-237.Google Scholar
  217. Plepys, D., Ibarra, F., Francke, W., & Lőfstedt, C. (2002). Odour-mediated nectar foraging in the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae): behavioral and electro-physiological responses to floral volatiles. Oikos, 99, 75-82.CrossRefGoogle Scholar
  218. Plowright, R.C. (1981). Nectar production in the boreal forest lily Clintonia borealis. Cana-dian Journal of Botany, 59, 156-160.Google Scholar
  219. Plowright, R.C. (1987). Corolla depth and nectar concentration: an experimental study. Cana-dian Journal of Botany, 65, 1011-1013.CrossRefGoogle Scholar
  220. Powell, K.S., Gatehouse, A.M.R., Hilder, V.A., Van Damme, E.J.M., Peumans, W.J., Boon-jawat, J., Horsham, K., & Gatehouse, J.A. (1995). Different antimetabolic effects of related lectins towards nymphal stages of Nilaparvata lugens. Entomologia Experimentalis et Applicata, 75, 61-65.CrossRefGoogle Scholar
  221. Pressey, R. (1996). Polygalacturonase inhibitors in bean pods. Phytochemistry, 42, 1267-1270.PubMedCrossRefGoogle Scholar
  222. Prince, R.C., & Gunson, D.E. (1987). Superoxide production in neutrophils. Trends in Bio-chemical Science, 12, 86-87.CrossRefGoogle Scholar
  223. Proctor, M., Yeo, P., & Lack, A. (1996). The natural history of pollination. London: Harper-Collins.Google Scholar
  224. Pryce-Jones, J. (1944). Some problems associated with nectar, pollen, and honey. Proceed-ings of the Linnean Society of London, 1944, 129-174.Google Scholar
  225. Prŷs-Jones, O.E., & Willmer, P.G. (1992). The biology of alkaline nectar in the purple tooth-wort (Lathraea clandestina): ground level defences. Biological Journal of the Linnean Society, 45, 373-388.CrossRefGoogle Scholar
  226. Pyke, G.H., & Waser, N.M. (1981). The production of dilute nectars by hummingbird and honeyeater flowers. Biotropica, 13, 260-270.CrossRefGoogle Scholar
  227. Rabhé, Y., Sauvion, N., Febvay, G., Peumans, W.J., & Gatehouse, A.M.R. (1995). Toxicity of lectins and processing of injested proteins in the pea aphid Acyrthosiphon pisum. Ento-mologia Experimentalis et Applicata, 76, 143-155.CrossRefGoogle Scholar
  228. Radzevenchuk, I.F., Voronina, A.I., Zaitseva, Z.M., & Lukish, N.I. (1976). Effect of phenol compounds, manganese, boron and cobalt on the [berry] yield and composition of the nec-tar of black currant flowers. Agrokhimiya, 6, 105-107.Google Scholar
  229. Raguso, R.A. (2004). Why are some floral nectars scented? Ecology, 85, 1486-1494.CrossRefGoogle Scholar
  230. Raguso, R.A., Light, D.M., & Pickersky, E. (1996). Electroantennogram responses of Hyles lineata (Sphingidae: Lepidoptera) to volatile compounds from Clarkia breweri (Ona-graceae) and other moth-pollinated flowers. Journal of Chemical Ecology, 22, 1735-1766.CrossRefGoogle Scholar
  231. Restrepo, S., Myers, K.L., del Pozo, O., Martin, G.B., Hart, A.L., Buell, C.R., Fry, W.E., & Smart, C.D. (2005). Gene profiling of a compatible interaction between Phytophthora in-festans and Solanum tuberosum suggests a role for carbonic anhydrase. Molecular Plant-Microbe Interactions, 18, 913-922.PubMedCrossRefGoogle Scholar
  232. Rhoades, D.F., & Bergdahl, J.C. (1981). Adaptive significance of toxic nectar. American Naturalist, 117, 798-803.CrossRefGoogle Scholar
  233. Robards, A.W., & Oates, K. (1986). X-ray microanalysis of ion distribution in Abutilon nec-tary hairs. Journal of Experimental Botany, 37, 940-946.CrossRefGoogle Scholar
  234. Roubik, D.W., & Buchmann, S.L. (1984). Nectar selection by Melipona and Apis mellifera (Hymenoptera: Apidae) and the ecology of nectar intake by bee colonies in a tropical for-est. Oecologia, 61, 1-10.CrossRefGoogle Scholar
  235. Roulston, T.H., Cane, J.H., & Buchmann, S.L. (2000). What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecological Mono-graphs, 70, 617-643.Google Scholar
  236. Rowley, D.A., & Halliwell, B. (1983). Formation of hydroxyl radicals from hydrogen perox-ide and iron salts by superoxide- and ascorbate-dependent mechanisms: relevance to the pathology of rheumatoid disease. Clinical Science (London), 64, 649-653.Google Scholar
  237. Rusterholz, H.P., & Erhardt, A. (1998). Effects of elevated CO2 on flowering phenology and nectar production of nectar plants important for butterflies of calcareous grasslands. Oecologia, 113, 341-349.CrossRefGoogle Scholar
  238. Sandhu, D.K., & Waraich, M.K. (1985). Yeasts associated with pollinating bees and flower nectar. Microbial Ecology, 11, 51-58.CrossRefGoogle Scholar
  239. Sazima, M., Vogel, S., do Prado, A.L., de Oliveira, D.M., Franz, G., & Sazima, I. (2001). The sweet jelly of Combretum lanceolatum flowers (Combretaceae): a cornucopia resource for bird pollinators in the Pantanal, western Brazil. Plant Systematics and Evolution, 227, 195-208.CrossRefGoogle Scholar
  240. Schwerdtfeger, M. (1996). Die Nektarzusammensetzung der Asteridae und ihre Beziehung zu Blütenökologie und Systematik. Dissertationes Botanicae, 264, 95 pp. Berlin: Gebrüder Borntraeger.Google Scholar
  241. Scobell, S.A., & Scott, P.E. (2002). Visitors and floral traits of a hummingbird-adapted cactus (Echinocereus coccineus) show only minor variation along an elevational gradient. Ameri-can Midland Naturalist, 147, 1-15.CrossRefGoogle Scholar
  242. Scogin, R. (1979). Nectar constituents in the genus Fremontia (Sterculiaceae): sugars, flavon-oids, and proteins. Botanical Gazette, 140, 29-31.CrossRefGoogle Scholar
  243. Seigler, D., Simpson, B.B., Martin, C., & Neff, J.L. (1978). Free 3-acetoxyfatty acids in floral glands of Krameria species. Phytochemistry, 17, 995-996.CrossRefGoogle Scholar
  244. Shiraishi, A., & Kuwabara, M. (1970). The effects of amino acids on the labellar hair chemo-sensory cells of the fly. Journal of General Physiology, 56, 768-782.PubMedCrossRefGoogle Scholar
  245. Singaravelan, N., Nee’man, G., Inbar, M., & Izhaki, I. (2005). Feeding responses of free-flying honeybees to secondary compounds mimicking floral nectars. Journal of Chemical Ecology, 31, 2791-2804.PubMedCrossRefGoogle Scholar
  246. Smith, G.F., Van Wyk, B.-E., Steyn, E.M.A., & Breuer, I. (2001). Infrageneric classification of Haworthia (Aloaceae): perspectives from nectar sugar analysis. Systematics and Geog-raphy of Plants, 71, 391-397.CrossRefGoogle Scholar
  247. Smith, L.L., Lanza, J., & Smith, G.C. (1990). Amino acid concentrations in extrafloral nectar of Impatiens sultani increase after simulated herbivory. Ecology, 71, 107-115.CrossRefGoogle Scholar
  248. Sols, A., Cadenas, E., & Alvarado, F. (1960). Enzymatic basis of mannose toxicity in honey bees. Science, 131, 297-298.PubMedCrossRefGoogle Scholar
  249. Sroka, Z., Cisowski, W., Seredyńska, M., & Luczkiewicz, M. (2001). Phenolic extracts from meadowsweet and hawthorn flowers have antioxidative properties. Zeitung für Naturfor-schung C, 56, 739-744.Google Scholar
  250. Stebbins, G.L. (1989). Adaptive shifts toward hummingbird pollination. In: J.H. Bock, & Y.B. Linhart (Eds.), The evolutionary ecology of plants (pp. 39-60). Boulder, Colorado: Westview Press. Google Scholar
  251. Stephenson, A.G. (1982). Iridoid glycosides in the nectar of Catalpa speciosa are unpalatable to nectar thieves. Journal of Chemical Ecology, 8, 1025-1034.CrossRefGoogle Scholar
  252. Stiles, F.G. (1981). Geographical aspects of bird-flower coevolution, with particular reference to Central America. Annals of the Missouri Botanical Garden, 68, 323-351.CrossRefGoogle Scholar
  253. Stiles, F.G., & Freeman, C.E. (1993). Patterns in floral nectar characteristics of some bird-visited plant species from Costa Rica. Biotropica, 25, 191-205.CrossRefGoogle Scholar
  254. Stone, T.B., Thompson, A.C., & Pitre, H.N. (1985). Analysis of lipids in cotton extrafloral nectar. Journal of Entomological Science, 20, 422-428.Google Scholar
  255. Sugiyama, J., Tokuoka, K., Suh, S.-O., Hirata, A., & Komagata, K. (1991). Sympodiomycop-sis: a new yeast-like anamorph genus with basidiomycetous nature from orchid nectar. Antonie Van Leeuwenhoek, 59, 95-108.PubMedCrossRefGoogle Scholar
  256. Swain, T. (1977). Secondary compounds as protective agents. Annual Review of Plant Physi-ology, 28, 479-501.CrossRefGoogle Scholar
  257. Tadey, M., & Aizen, M.A. (2001). Why do flowers of a hummingbird-pollinated mistletoe face down? Functional Ecology, 15, 782-790.CrossRefGoogle Scholar
  258. Tholl, D., Chen, F., Gershenzon, J., & Pichersky, E. (2004). Arabidopsis thaliana, a model system for investigating volatile terpene biosynthesis, regulation, and function. In: J.T. Romeo (Ed.), Secondary metabolism in model systems (pp. 1-18). Amsterdam: Elsevier.CrossRefGoogle Scholar
  259. Thornburg, R.W., Carter, C., Powell, A., Mittler, R., Rizhsky, L., & Horner, H.T. (2003). A major function of the tobacco floral nectary is defense against microbial attack. Plant Sys-tematics and Evolution, 238, 211-218.Google Scholar
  260. Thorp, R.W., Briggs, D.L., Estes, J.R., & Erickson, E.H. (1975). Nectar fluorescence under ultraviolet irradiation. Science, 189, 476-478.PubMedCrossRefGoogle Scholar
  261. Torres, C., & Galetto, L. (2002). Are nectar sugar composition and corolla tube length related to the diversity of insects that visit Asteraceae flowers? Plant Biology, 4, 360-366.CrossRefGoogle Scholar
  262. van Wyk, B.-E., Whitehead, C.S., Glen, H.F., Hardy, D.S., van Jaarsveld, E.J., & Smith, G.F. (1993). Nectar sugar composition in the subfamily Alooideae (Asphodelaceae). Biochemi-cal Systematics and Ecology, 21, 249-253.CrossRefGoogle Scholar
  263. Vesprini, J.L., Nepi, M., & Pacini, E. (1999). Nectary structure, nectar secretion patterns and nectar composition in two Helleborus species. Plant Biology, 1, 560-568.CrossRefGoogle Scholar
  264. Villarreal, A.G., & Freeman, C.E. (1990). Effects of temperature and water stress on some floral nectar characteristics in Ipomopsis longiflora (Polemoniaceae) under controlled con-ditions. Botanical Gazette, 151, 5-9.CrossRefGoogle Scholar
  265. Vogel, S. (1971). Pollination of oil-producing flowers by oil-collecting bees. Naturwissen-schaften, 58, 58.Google Scholar
  266. Völkl, W., Woodring, J., Fischer, M., Lorenz, M.W., & Hoffmann, K.H. (1999). Ant-aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia, 118, 483-491.CrossRefGoogle Scholar
  267. Wacht, S., Lunau, K., & Hansen, K. (2000). Chemosensory control of pollen ingestion in the hoverfly Eristalis tenax by labellar taste hairs. Journal of Comparative Physiology A, 186, 193-203.CrossRefGoogle Scholar
  268. Waller, G.D., Carpenter, E.W., & Ziehl, O.A. (1972). Potassium in onion nectar and its prob-able effect on attractiveness of onion flowers to honey bees. Journal of the American Society for Horticultural Science, 97, 535-539.Google Scholar
  269. Weast, R.C., (Ed.) (1980). CRC handbook of chemistry and physics, 60th edn. Boca Raton, Florida: CRC Press. Google Scholar
  270. Weller, S.G., & Sakai, A.K. (1999). Using phylogenetic approaches for the analysis of plant breeding system evolution. Annual Review of Ecology and Systematics, 30, 167-199.CrossRefGoogle Scholar
  271. Williams, N.M., & Thomson, J.D. (1998). Trapline foraging by bumble bees: III. Temporal patterns of visitation and foraging success at single plants. Behavioral Ecology, 9, 612-621.CrossRefGoogle Scholar
  272. Willmer, P.G. (1980). The effects of insect visitors on nectar constituents in temperate plants. Oecologia, 47, 270-277.CrossRefGoogle Scholar
  273. Wolff, D. (2006). Nectar sugar composition and volumes of 47 species of Gentianales from a southern Ecuadorian montane forest. Annals of Botany, 97, 767-777.PubMedCrossRefGoogle Scholar
  274. Wyatt, R., Broyles, S.B., & Derda, G.S. (1992). Environmental influences on nectar produc-tion in milkweeds (Asclepias syriaca and A. exaltata). American Journal of Botany, 79, 636-642.CrossRefGoogle Scholar
  275. Zalewski, W. (1966). Phosphatases in honey. Pszczelnicze Zeszyty Naukowe, 9, 1-34. Google Scholar
  276. Zauralov, O.A. (1969). Oxidizing enzymes in nectaries and nectar. Trudy Nauchno-Issledovatel’skogo Instituta Pchelovodstva, 1969, 197-225.Google Scholar
  277. Ziegler, H. (1956). Untersuchungen über die Leitung und Sekretion der Assimilate. Planta, 47, 447-500.CrossRefGoogle Scholar
  278. Ziegler, H. (1975). Nature of transported substances. In: M.H. Zimmerman, & J.A. Milburn (Eds.), Transport in plants. I. Phloem transport. Encyclopedia of Plant Physiology, volume 1 (pp. 59-100). Berlin: Springer-Verlag. Google Scholar
  279. Zimmerman, J.G. (1954). Über die Sekretion saccharosespaltender trans-Glucosidasen in pflanzlichem Nektar. Experientia, 10, 145-149.CrossRefGoogle Scholar
  280. Zimmerman, M. (1953). Papierchromatographische Untersuchungen über die pflanzliche Zuckersekretion. Berichte der Schweizerischen Botanischen Gesellschaft, 63, 402-429.Google Scholar
  281. Zimmerman, M. (1983). Plant reproduction and optimal foraging: experimental nectar ma-nipulations in Delphinium nelsonii. Oikos, 41, 57-63.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Susan W. Nicolson
    • 1
  • Robert W. Thornburg
    • 2
  1. 1.Department of Zoology and EntomologyUniversity of PretoriaSouth Africa
  2. 2.Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesUSA

Personalised recommendations