Advertisement

Bilingualism and Cognitive Arithmetic

Chapter

Keywords

Number Word Arabic Numeral SNARC Effect Number Magnitude Arithmetic Fact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashcraft, M. H., and Battaglia, J. 1978. Cognitive arithmetic: evidence for retrieval and decision processes in mental addition. Journal of Experimental Psychology: Human Learning and Memory, 4: 527–538.CrossRefGoogle Scholar
  2. Ashcraft, M. H. 1992. Cognitive arithmetic: a review of data and theory. Cognition, 44: 75–106.CrossRefGoogle Scholar
  3. Athanasopoulos, P. 2006. Effects of the grammatical representation of number on cognition in bilinguals. Bilingualism: Language and Cognition, 9: 89–96.CrossRefGoogle Scholar
  4. Balakrishnan, J. D., and Ashby, F. G. 1992. Subitizing: magical numbers or mere superstition. Psychological Research, 54: 80–90.CrossRefGoogle Scholar
  5. Barth, H., La Mont, K., Lipton, J., and Spelke, E. 2005. Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences, 102: 14116–14121.CrossRefGoogle Scholar
  6. Bernardo, A. B. I. 2001. Asymmetric activation of number codes in bilinguals: further evidence for the encoding complex model of number processing. Memory and Cognition, 29: 968–976.Google Scholar
  7. Boysen, S. T., and Berntson, G. G. 1989. Quantity-based interference and symbolic representations in chimpanzees (Pan trogolodytes). Journal of Experimental Psychology: Animal Behavior Processes, 22: 76–86.CrossRefGoogle Scholar
  8. Boysen, S. T., and Capaldi, E. J. 1993. The development of numerical competence: animal and human models. Hillsdale, NJ: Erlbaum.Google Scholar
  9. Brysbaert, M., Fias, W., and Nöel, M.-P. 1998. The Whorfian hypothesis and numerical cognition: Is “twenty-four” processed in the same way as “four-and-twenty”? Cognition, 66: 51–77.CrossRefGoogle Scholar
  10. Butterworth, B., Cipolotti, L., and Warrington, E. K. 1996. Short-term memory impairment and arithmetical ability. Quarterly Journal of Experimental Psychology, 49A: 251–262.CrossRefGoogle Scholar
  11. Butterworth, B. 1999. The mathematical brain. London: Macmillan.Google Scholar
  12. Campbell, J. I. D., and Clark, J. M. 1988. An encoding-complex view of cognitive number processing: Comment on McCloskey, Sokol, and Goodman (1986). Journal of Experimental Psychology: General, 117: 204–214.CrossRefGoogle Scholar
  13. Campbell, J. I. D. 1994. Architectures for numerical cognition. Cognition, 53: 1–44.CrossRefGoogle Scholar
  14. Campbell, J. I. D. 1998. Linguistic influences in cognitive arithmetic: Comment on Noël, Fias and Brysbaert (1997). Cognition, 67: 353–364.CrossRefGoogle Scholar
  15. Campbell, J. I. D., Kanz, C. L., and Xue, Q. 1999. Number processing in Chinese-English bilinguals. Mathematical Cognition, 5: 1–39.CrossRefGoogle Scholar
  16. Campbell, J. I. D., and Xue, Q. 2001. Cognitive arithmetic across cultures. Journal of Experimental Psychology: General, 130: 299–315.CrossRefGoogle Scholar
  17. Campbell, J. I. D., and Epp, L. J. 2004. An encoding-complex approach to numerical cognition in Chinese-English bilinguals. Canadian Journal of Experimental Psychology, 58: 229–244.Google Scholar
  18. Campbell, J. I. D., and Epp, L. J. 2005. Architectures for arithmetic. In Campbell, J. I. D. (ed.), Handbook of mathematical cognition. New York: Psychology Press. 347–360.Google Scholar
  19. Collins, A. M., and Loftus, E. F. 1975. A spreading activation theory of semantic processing. Psychological Review, 82: 407–428.CrossRefGoogle Scholar
  20. Cordes, S., Gelman, R., Gallistel, C. R., and Whalen, J. 2001. Variability signatures distinguish verbal from non-verbal counting for both large and small quantities. Psychonomic Bulletin and Review, 8: 698–707.Google Scholar
  21. Damian, M. F. 2004. Asymmetries in the processing of Arabic digits and number words. Memory and Cognition, 32: 164–171.Google Scholar
  22. Dehaene, S., Bossini, S., and Giraux, P. 1993. The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122: 371–396.CrossRefGoogle Scholar
  23. Dehaene, S., and Cohen, L. 1995. Towards an anatomical and functional model of number processing. Mathematical Cognition, 1: 83–120.Google Scholar
  24. Dehaene, S. 1997. The number sense. New York: Oxford University Press.Google Scholar
  25. Dehaene, S., Piazza, M., Pinel., P., and Cohen, L. 2003. Three parietal circuits for number processing. Cognitive Neuropsychology, 20: 487–506.CrossRefGoogle Scholar
  26. Dehaene, S., Molko, N., Cohen, L., and Wilson, A. J. 2004. Arithmetic and the brain. Current Opinion in Neurobiology, 14: 218–224.CrossRefGoogle Scholar
  27. Dehaene, S., Izard, V., Pica, P., and Spelke, E. 2006. Core knowledge of geometry in an Amazonian indigen group. Science, 311: 381–384.CrossRefGoogle Scholar
  28. Delazer, M., Domahs, F., Lochy, A., Karner, E., Benke, Th., and Poewe, W. 2004. Number processing and calculation in a case of Fahr’s disease. Neuropsychologia, 42: 1050–1062.CrossRefGoogle Scholar
  29. Fias, W. 2001. Two routes for the processing of verbal numbers: evidence from the SNARC effect. Psychological Research, 65: 250–259.CrossRefGoogle Scholar
  30. Fias, W., Reynvoet, B., and Brysbaert, M. 2001. Are Arabic numerals processed as pictures in a Stroop interference task? Psychological Research, 65: 242–249.CrossRefGoogle Scholar
  31. Frenck-Mestre, C., and Vaid, J. 1993. Activation of number facts in bilinguals. Memory and Cognition, 21: 809–818.Google Scholar
  32. Galfano, G., Rusconi, E., and Umiltà, C. 2003. Automatic activation of multiplication facts: evidence from the nodes adjacent to the product. Quarterly Journal of Experimental Psychology, 56A: 31–61.Google Scholar
  33. Galfano, G., Mazza, V., Angrilli, A., and Umiltà, C. 2004. Electrophysiological correlates of stimulus-driven multiplication facts retrieval. Neuropsychologia, 42: 1370–1382.CrossRefGoogle Scholar
  34. Gallistel, C. R., and Gelman, R. 2000. Non-verbal numerical cognition: from real to integers. Trends in Cognitive Sciences, 2: 59–65.CrossRefGoogle Scholar
  35. Geary, D. C., Cormier, P., Goggin, J. P., Estrada, P., and Lunnhave, M. C. E. 1993. Mental arithmetic: A componential analysis of speed-of-processing across monolingual, weak bilingual, and strong bilingual adults. International Journal of Psychology, 28: 185–201.Google Scholar
  36. Gelman, R. 1991. Epigenetic foundations of knowledge structures: initial and transcendent constructions. In Carey, S., and Gelman, R. (eds.), The epigenesist of mind: essays on biology and cognition. Hillsdale NJ: Erlbaum. 293–322.Google Scholar
  37. Gelman, R., and Gallistel, C. R. 1978. The child’s understanding of number. Cambridge, MA: Harvard University Press.Google Scholar
  38. Gelman, R., and Gallistel, C. R. 2004. Language and the origin of numerical concepts. Science, 306: 441–443.CrossRefGoogle Scholar
  39. Gelman, R., and Butterworth, B. 2005. Number and language: how are they related? Trends in Cognitive Sciences, 9: 6–10.CrossRefGoogle Scholar
  40. Gordon, P. 2004. Numerical cognition without words: evidence from Amazonia. Science, 306: 496–499.CrossRefGoogle Scholar
  41. Hauser, M., Carey, S., and Hauser, L. 2000. Spontaneous number representation in semi-free-ranging rhesus monkeys. Proceedings of the Royal Society of London B: Biological Sciences, 267: 829–833.CrossRefGoogle Scholar
  42. Ho, C. S. H., and Fuson, K. C. 1998. Children’s knowledge of teen quantities as tens and ones: comparisons of Chinese, British, and American kindergartners. Journal of Educational Psychology, 90: 536–544.CrossRefGoogle Scholar
  43. Kilpatrick, J., Swafford, J., and Findell, B. 2001. Adding it up: helping children learn mathematics. Washington DC: National Academy Press.Google Scholar
  44. LeFevre, J.-A., and Morris, J. 1999. More on the relation between division and multiplication in simple arithmetic: evidence for mediation of division solutions via multiplication. Memory and Cognition, 27: 803–812.Google Scholar
  45. LeFevre, J.-A., Bisanz, J., and Mrkonjic, L. 1988. Cognitive arithmetic: evidence for obligatory activation of arithmetic facts. Memory and Cognition, 16: 45–53.Google Scholar
  46. LeFevre, J.-A., Sadesky, G. S., and Bisanz, J. 1996. Selection of procedures in mental addition: reassessing the problem-size effect in adults. Journal of Experimental Psychology: Learning, Memory and Cognition, 22: 216–230.CrossRefGoogle Scholar
  47. Ma, L. 1999. Knowing and teaching elementary school mathematics. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  48. Mägiste, E. 1980a. Arithmetical calculations in monolinguals and bilinguals. Psychological Research, 42: 363–373.CrossRefGoogle Scholar
  49. Mägiste, E. 1980b. Memory for numbers in monolinguals and bilinguals. Acta Psychologica, 46: 63–68.CrossRefGoogle Scholar
  50. Marsh, L. G., and Maki, R. H. 1976. Efficiency of arithmetical operations in bilinguals as a function of language. Memory and Cognition, 4: 459–464.Google Scholar
  51. Matsuzawa, T. 1985. Use of numbers by a chimpanzee. Nature, 315: 57–59.CrossRefGoogle Scholar
  52. McClain, L., and Shih Huang, J. Y. 1982. Speed of simple arithmetic in bilinguals. Memory and Cognition, 10: 591–596.Google Scholar
  53. McCloskey, M. 1992. Cognitive mechanisms in numerical processing: evidence from acquired dyscalculia. Cognition, 44: 107–157.CrossRefGoogle Scholar
  54. McNeil, J. E., and Warrington, E. K. 1994. A dissociation between addition and subtraction with written calculation. Neuropsychologia, 32: 717–728.CrossRefGoogle Scholar
  55. Niedeggen, M., and Rösler, F. 1999. N400 effects reflect activation spread during retrieval of arithmetic facts. Psychological Science, 10: 271–276.CrossRefGoogle Scholar
  56. Noël, M.-P., and Fias, W. 1998. Bilingualism and numeric cognition. Psychologica Belgica, 38: 231–250.Google Scholar
  57. Noël, M.-P., Robert, A., and Brysbaert, M. 1998. Does language really matter when doing arithmetic? Reply to Campbell (1998). Cognition, 67: 365–373.CrossRefGoogle Scholar
  58. Olthof, A., Iden, C. M., and Roberts, W. A. 1997. Judgements of ordinality and summation of number symbols by squirrel monkeys (Saimiri sciureus). Journal of Experimental Psychology: Animal Behavior Processes, 23: 325–339.CrossRefGoogle Scholar
  59. Pavlenko, A. 2005. Bilingualism and thought. In Kroll, J. F. and De Groot, A. M. B. (eds.), Handbook of bilingualism: psycholinguistic approaches. New York: Oxford University Press. 433–454.Google Scholar
  60. Pesta, B. J., Sanders, R. E., and Murphy, M. D. 2001. Misguided multiplication: creating false memories with numbers rather than words. Memory and Cognition, 29: 478–483.Google Scholar
  61. Pica, P., Lemer, C., Izard, V., and Dehaene, S. 2004. Exact and approximate arithmetic in an Amazonian indigen group. Science, 306: 499–503.CrossRefGoogle Scholar
  62. Platt, J. R., and Johnson, D. M. 1971. Localization of position within a homogeneous behaviour chain: Effects of error contingencies. Learning and Motivation, 2: 386–414.CrossRefGoogle Scholar
  63. Premack, D., and Premack, A. 2005. Evolution versus invention. Science, 307: 673.CrossRefGoogle Scholar
  64. Rossor, M. N., Warrington, E. K., and Cipolotti, L. 1995. The isolation of calculation skills. Journal of Neurology, 242: 78–81.CrossRefGoogle Scholar
  65. Rusconi, E., Galfano, G., Speriani, V., and Umiltà, C. 2004. Capacity and contextual constraints on product activation: Evidence from task-irrelevant fact retrieval. Quarterly Journal of Experimental Psychology, 57A: 1485–1511.Google Scholar
  66. Rusconi, E., Walsh, V., and Butterworth, B. 2005. Dexterity with numbers: rTMS over left angular gyrus disrupts finger gnosis and number processing. Neuropsychologia, 43: 1609–1624.CrossRefGoogle Scholar
  67. Rusconi, E., Galfano, G., Rebonato, E., and Umiltà, C. 2006a. Bidirectional links in the network of multiplication facts. Psychological Research, 70: 32–42.CrossRefGoogle Scholar
  68. Rusconi, E., Priftis, K., Rusconi, M. L., and Umiltà, C. 2006b. Arithmetic priming from neglected numbers. Cognitive Neuropsychology, 23: 227–239.CrossRefGoogle Scholar
  69. Rusconi, E., Galfano, G., Umiltà, C., and Job, R. 2006c. Arithmetic priming from written number words. Poster presented at the Annual Meeting of the Cognitive Neuroscience Society, San Francisco, 2006.Google Scholar
  70. Sholl, A. 1996. Animacy effects in picture naming and bilingual translation: Perceptual and semantic contributions to concept mediation. Unpublished doctoral dissertation, University of Massachussets, Amherst.Google Scholar
  71. Shrager, J., and Siegler, R. S. 1998. SCADs: a model of children’s strategy choices and discoveries. Psychological Science, 9: 405–410.CrossRefGoogle Scholar
  72. Spelke, E. S., and Tsivkin, S. 2001. Language and number: a bilingual training study. Cognition, 78: 45–88.CrossRefGoogle Scholar
  73. Stazyk, E. H., Ashcraft, M. H., and Hamann, M. S. 1982. A network approach to simple multiplication. Journal of Experimental Psychology: Learning, Memory, and Cognition, 8: 320–335.CrossRefGoogle Scholar
  74. Trick, L. M., and Phylyshyn, Z. W. 1994. Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychological Review, 101: 80–102.CrossRefGoogle Scholar
  75. Vaid, J., and Menon, R. 2000. Correlates of bilinguals’ preferred language for mental computations. Spanish Applied Linguistics, 4: 325–342.Google Scholar
  76. Warrington, E. K. 1982. The fractionation of arithmetical skills: A single case study. Quarterly Journal of Experimental Psychology, 34A: 31–51.Google Scholar
  77. Whalen, J., Gallistel, C. R., and Gelman, R. 1999. Nonverbal counting in humans: the psychophysics of number representation. Psychological Science, 10: 130–137.CrossRefGoogle Scholar
  78. Winkelman, J., and Schmidt, J. 1974. Associative confusions in mental arithmetic. Journal of Experimental Psychology, 102: 734–736.CrossRefGoogle Scholar
  79. Wynn, K. 1990. Children’s understanding of counting. Cognition, 36: 155–193.CrossRefGoogle Scholar
  80. Zbrodoff, N. J., and Logan, G. D. 1986. On the autonomy of mental processes: A case study of arithmetic. Journal of Experimental Psychology: General, 115: 118–130.CrossRefGoogle Scholar
  81. Zhang, H., and Zhou, Y. 2003. The teaching of mathematics in Chinese elementary schools. International Journal of Psychology, 38: 286–298.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.University CollegeLondon
  2. 2.University of PadovaPadova
  3. 3.University of TrentoRovereto

Personalised recommendations