Skip to main content

Abstract

Many aquatic molluscs are pests; certain snails act as intermediate hosts of human and animal diseases, and zebra mussels foul water supply systems and some aquatic snails damage paddy rice. However, no biological pesticides are available for use against these pests. In contrast, one biological pesticide is commercially available for use against terrestrial mollusc pests and there are other candidate microorganisms with potential to be developed as biological pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arias, R. O. and Crowell, H. H. 1963. A contribution to the biology of the gray garden slug. Bull. Southern Calif. Acad. Sci. 62, 83–97.

    Google Scholar 

  • Baker, G. H. 2002. Helicidae and Hygromiidae as pests in cereal crops and pastures in southern Australia. In “Molluscs as Crop Pests” (G. M. Barker, Ed.), pp 193–216. CABI Publishing, Wallingford, UK.

    Google Scholar 

  • Barker, G. M. 2001. “The Biology of Terrestrial Molluscs”, CABI Publishing, Wallingford, UK.

    Book  Google Scholar 

  • Barker, G. M. 2002a. “Molluscs as Crop Pests”, CABI Publishing, Wallingford, UK.

    Book  Google Scholar 

  • Barker, G. M. 2002b. Gastropods as pests in New Zealand pastoral agriculture, with emphasis on Agriolimacidae, Arionidae and Milacidae. In “Molluscs as Crop Pests” (G. M. Barker, Ed.), pp 361–424. CABI Publishing, Wallingford, UK.

    Chapter  Google Scholar 

  • Barker, G. M. 2004. “Natural Enemies of Terrestrial Molluscs”, CABI Publishing, Wallingford, UK.

    Book  Google Scholar 

  • Barry, B. D. 1969. Evaluation of chemicals for the control of slugs on field corn in Ohio. J. Econ. Entomol. 62, 1277–1299.

    CAS  Google Scholar 

  • Bedding, R. A., 1984. Large scale production, storage and transport of the insect parasitic nematodes Neoaplectana spp. and Heterorhabditis spp. Ann. Appl. Biol. 104, 117–120.

    Article  Google Scholar 

  • Begley, J. W. 1990. Efficacy against insects in habitats other than soil. In “Entomopathogenic Nematodes in Biological Control” (R. Gaugler, and H. K. Kaya, Eds.), pp. 215–231. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Brooks, W. M. 1968. Tetrahymenid ciliates as parasites of the gray garden slug. Hilgardia 39, 205–276.

    Google Scholar 

  • Byers, R. A. and Bierlin, D. L. 1984. Continuous alfalfa: invertebrate pests during establishment. J. Econ. Entomol. 77, 1500–1503.

    CAS  Google Scholar 

  • Byers, R. A. and Calvin, D. D. 1994. Economic injury levels to field corn from slug (Stylommatophora: Agrolimacidae) feeding. J. Econ. Entomol. 87, 1345–1350.

    Google Scholar 

  • Cameron, R. A. D., Evesham, B. and Jackson, N. 1983. A field key to slugs of the British Isles. Field Stud. 5, 807–824.

    Google Scholar 

  • Charwat, S. M., Davies, K. A., and Hunt, C. H. 2000. Impact of a rhabditid nematode on survival and fecundity of Cernuella virgata (Mollusca: Helicidae). Biocontrol Sci. Technol. 10, 147–155.

    Article  Google Scholar 

  • Chichester, L. F. and Getz, L. L. 1973. The terrestrial slugs of northeastern North America. Sterkiana 50, 11–42.

    Google Scholar 

  • Clements, R. O. and Murray, P. J. 1991. Comparison between defined-area slug traps and other methods of trapping slugs in cereal fields. Crop Protect. 10, 152–154.

    Article  Google Scholar 

  • Coupland, J. B. 1995. Susceptibility of helicid snails to isolates of the nematode Phasmarhabditis hermaphrodita from Southern France. J. Invertebr. Pathol. 66, 207–208.

    Article  Google Scholar 

  • Dean, W. W., Mead, A. R. and Northey, W. T. 1970. Aeromonas liquefaciens in the giant African snail Achatina fulica. J. Invertebr. Pathol. 16, 346–351.

    Article  CAS  Google Scholar 

  • Ducklow, H. W., Tarraza, J. R., and Mitchell, R. 1980. Experimental pathogenicity of Vibrio parahaemolyticus for the schistosome-bearing snail Biomphalaria glabrata. Can. J. Microbiol. 26, 503–506.

    Article  CAS  Google Scholar 

  • Ester, A. and Wilson, M. J. 2005. Application of slug-parasitic nematodes. In “Nematodes as Biocontrol Agents” (P. S. Grewal, R-U. Ehlers and D. I. Shapiro-Ilan, Eds.), pp 431–444. CABI Publishing, Wallingford, UK.

    Chapter  Google Scholar 

  • Ferguson, C. M., Barrat, B. I. P., and Jones, P. A. 1989. A new technique for estimating density of the field slug, Deroceras reticulatum (Muller). In “Slugs and Snails in World Agriculture” (I. F. Henderson, Ed.), pp. 331–337. British Crop Protection Council, Farnham, UK.

    Google Scholar 

  • Ferguson, C. M. and Hanks, C. B. 1990. Evaluation of defined-area trapping for estimating the density of the field slug, Deroceras reticulatum (Muller). Ann. Appl. Biol. 117, 451–454.

    Article  Google Scholar 

  • Francois, E., Riga, A. and Moens, R. 1965. Estimation des populations de Agriolimax reticulatus Muller au moyen de la technique de marquage au radiophosphore 32P, et recapture. Parasitica 24, 63–78.

    Google Scholar 

  • Fretter, V. 1952. Experiments with 32P and 131I on species of Helix, Arion and Agriolimax. Qtly. J. Microsc. Sci. 93, 133–146.

    Google Scholar 

  • Glen, D. M. and Moens, R. 2002. Agriolimacidae, Arionidae and Milacidae as pests in West European cereals. In “Molluscs as Crop Pests” (G. M. Barker, Ed.), pp 271–300. CABI Publishing, Wallingford, UK.

    Chapter  Google Scholar 

  • Glen, D. M., Wilson, M. J., Brain, P., and Stroud, G. 2000. Feeding activity and survival of slugs, Deroceras reticulatum exposed to the rhabditid nematode, Phasmarhabditis hermaphrodita: a model of dose response. Biol. Control 17, 73–81.

    Article  Google Scholar 

  • Glen, D. M., Wilson, M. J., Pearce, J. D., and Rodgers, P. B. 1994. Discovery and investigation of a novel nematode parasite for biological control of slugs. In “Proceedings of the 1994 Brighton Crop Protection Conference - Pests and Diseases”, pp. 617–625. British Crop Protection Council, Farnham, UK.

    Google Scholar 

  • Glen, D. M., Wilson, M. J., Hughes, L. A., Cargeeg, P., and Hajjar, A. 1996. Exploring and exploiting the potential of the rhabditid nematode Phasmarhabditis hermaphrodita as a biocontrol agent for slugs. In “Slug and Snail Pests in Agriculture” (I. F. Henderson, Ed.), pp. 271–280. British Crop Protection Council, Farnham, UK.

    Google Scholar 

  • Glen, D. M. and Wiltshire, C. W. 1986. Estimating slug populations from bait-trap catches. In “Proceedings of the 1986 British Crop Protection Conference - Pests and Diseases”, pp. 1151–1158. British Crop Protection Council, Farnham, UK.

    Google Scholar 

  • Glen, D. M., Wiltshire, C. W., and Butler, R. C. 1991. Slug population changes following molluscicide treatment in relation to distance from edge of treated area. Crop Protect. 10, 408–412.

    Article  Google Scholar 

  • Grewal, P. S., Grewal, S. K., Tan, L., and Adams, B. J. 2003. Parasitism of molluscs by nematodes. J. Nematol. 35, 146–156.

    CAS  PubMed  Google Scholar 

  • Hammond, R. B. and Byers R. A. 2002. Agriolimacidae and Arionidae as pests in conservation tillage soybean and maize cropping in North America. In “Molluscs as Crop Pests” (G. M. Barker, Ed.), pp 301–314. CABI Publishing, Wallingford, UK.

    Chapter  Google Scholar 

  • Hogan, J. M. and Steele, G. R. 1986. Dye-marking slugs. J. Mollusc. Stud. 52, 138–143.

    Article  Google Scholar 

  • Hommay, G. M. and Briard, P. 1988 Apport du piegeage dans le suivi des peuplements de limaces en grande culture. Haliotes 18, 55–74.

    Google Scholar 

  • Hunter, P. J. 1968. Studies on slugs of arable ground: I. sampling methods. Malacologia 6, 370–389.

    Google Scholar 

  • Jaworska, M. 1993. Laboratory infection of slugs (Gastropoda: Pulmonata) with entomopathogenic nematodes (Rhabditida: Nematoda). J. Invertebr. Pathol. 61, 223–224.

    Article  Google Scholar 

  • Jennings, T. J. and Barkham, J. P. 1975. Slug populations in mixed deciduous woodland. Oecologia (Berlin) 20, 279–286.

    Article  Google Scholar 

  • Kaya, H. K. and Stock, S. P. 1997. Techniques in insect nematology. In “Manual of Techniques in Insect Pathology” (L. Lacey, Ed.), pp. 281–324. Academic Press, San Diego, CA.

    Chapter  Google Scholar 

  • Kerney, M. P. and Cameron, R. A. D. 1979. “A Field Guide to the Land Snails of Britain and N. W. Europe.” Collins, London.

    Google Scholar 

  • Li, P. S., Deng, C. S., Zhang, S. G., and Yang, H. W. 1986. Preliminary tests on Steinernema glaseri infecting the snail, Oncomelania hupensis, an intermediate host of Schistosoma japonica. Chinese J. Biol. Control 2, 50–52.

    Google Scholar 

  • MacMillan, K., Blok, V., Young, I, Crawford, J. C., and Wilson, M. J. 2006. Quantification of the slug parasitic nematode Phasmarhabditis hermaphrodita from soil samples using real time qPCR. Int. J. Parasitol. 36, 1453–1461.

    Article  CAS  PubMed  Google Scholar 

  • Mead, A. R. 1961. “The Giant African Snail: A problem in Economic Malacology,” Univ. of Chicago Press, Chicago, IL.

    Google Scholar 

  • Mengert, H. 1953. Nematoden und Schnecken. Z. Morphol. Oekol. Tiere. 41, 311–349.

    Article  Google Scholar 

  • Moens, R., François, E., Riga, A., and van den Bruel, W. E. 1967. A mechanical barrier against terrestrial gastropods. Parasitica 23, 22–27.

    Google Scholar 

  • Moens, R., François, E., Riga, A., and van den Bruel, W. E. 1965. Les radioisotopes en ècologie animale. Premiére informations sur le comportement de Agriolimax reticulatus Muller. Med. Landbouw. Opzoekings. Staat Gent 3, 1810–1823.

    Google Scholar 

  • Moens, R. and Glen, D.,M. 2002. Agriolimacidae, Arionidae and Milacidae as pests in West European oilseed rape. In “Molluscs as Crop Pests” (G. M. Barker, Ed.), pp. 425–440. CABI Publishing, Wallingford, UK.

    Google Scholar 

  • Morand, S. and Hommay, G. 1990. Redescription de Agfa flexilis Dujardin, 1845 (Nematoda: Agfidae) parasite de l’appareil gènital de Limax cinereoniger Wolf, 1803 (Gastropoda, Limacidae). Syst. Parasitol. 15, 127–132,

    Article  Google Scholar 

  • Morand, S. and Petter, A. J. 1986. Nemhelix bakeri n. gen. n. sp. (Nematoda, Cosmocercidae) parasite de l’appareil gènital de Helix aspersa Müller (Gastropoda, Helicidae). Can. J. Zool. 64, 2008–2011.

    Article  Google Scholar 

  • Morand, S., Wilson, M. J. and Glen, D. M. 2004. Nematodes (Nematoda) parasitic in terrestrial gastropods. In “Natural Enemies of Terrestrial Molluscs” (G. M. Barker, Ed.), pp. 525–558. CABI Publishing, Wallingford, UK.

    Chapter  Google Scholar 

  • Parrella, M. P., Robb, K. L., and Morishita, P. 1985. Snails and slugs in ornamentals. Calif. Agric., Jan-Feb, 6–8.

    Google Scholar 

  • Port, G. R. and Ester, A. 2002. Gastropods as pests in vegetable and ornamental crops in Western Europe. In “Molluscs as Crop Pests” (G. M. Barker, Ed.), pp. 337–352. CABI Publishing, Wallingford, UK.

    Chapter  Google Scholar 

  • Port, C. M. and Port, G. R. 1986. The biology and behavior of slugs in relation to crop damage and control. Agric. Zool. Rev. 1, 255–299.

    Google Scholar 

  • Raut, S. K. 2004. Bacterial and non-microbial diseases in terrestrial gastropods. In “Natural Enemies of Terrestrial Molluscs” (G. M. Barker, Ed.), pp. 525–558. CABI Publishing, Wallingford, UK.

    Google Scholar 

  • Raut, S. K. and Barker, G. M. 2002. Achatina fulica Bowdich and other Achatinidae as pests in tropical agriculture. In “Molluscs as Crop Pests” (G. M. Barker, Ed.), pp. 55–114. CABI Publishing, Wallingford, UK.

    Google Scholar 

  • Richter, K. O. 1976. A method for individually marking slugs. J. Mollusc. Stud. 42, 146–151.

    Google Scholar 

  • Rollo, C. D., Vertinsky, I. B., Wellington, W. G. and Kanetkar, V. K. 1983. Alternative risk-taking styles: The case of time-budgeting strategies of terrestrial gastropods. Res. Pop. Ecol. (Kyoto) 25, 321–335.

    Article  Google Scholar 

  • Rueda, A., Caballero, R, Kaminsky, R., and Andrews, K. L. 2002. Vaginulidae in Central America, with emphasis on the bean slug Sarasinula plebeia (Fischer). In “Molluscs as Crop Pests” (G. M. Barker, Ed.), pp. 115–144. CABI Publishing, Wallingford, UK.

    Chapter  Google Scholar 

  • Sakovich, N. J. 2002. Integrated management of Cantareus asperses (Müller) (Helicidae) as a pest of citrus in California. In “Molluscs as Crop Pests” (G. M. Barker, Ed.), pp. 353–3360. CABI Publishing, Wallingford, UK.

    Chapter  Google Scholar 

  • Sanderson, G. and Sirgel, W. 2002. Helicidae as pests in Australian and South African grapevines In “Molluscs as Crop Pests” (G. M. Barker, Ed.), pp. 255–270. CABI Publishing, Wallingford, UK.

    Chapter  Google Scholar 

  • Singer, S., VanFleet, A., Viel, J. J., and Genevese, E. E. 1997. Biological control of the zebra mussel Dreissena polymorpha and the snail Biomphalaria glabrata, using Gramicidin S and D and molluscicidal strains of Bacillus. J. Ind. Microbiol. Biotechnol. 18, 226–231.

    Article  CAS  Google Scholar 

  • South, A. 1964. Estimation of slug populations. Ann. Appl. Biol. 53, 251–258.

    Article  Google Scholar 

  • South, A. 1992. “Terrestrial Slugs, Biology, Ecology and Control.” Chapman and Hall, London, UK.

    Google Scholar 

  • Speiser, B. and Andermatt, M. 1996. Field trials with Phasmarhabditis hermaphrodita in Switzerland. In “Slug and Snail Pests in Agriculture” (I. F. Henderson, Ed.), pp. 419–424. British Crop Protection Council, Farnham, UK.

    Google Scholar 

  • Symondson, W. O. C. 1990. Chemical confinement of slugs; an alternative to electric fences. J. Mollusc. Stud. 59, 259–261.

    Article  Google Scholar 

  • Tan, L. and Grewal, P. S., 2001a. Infection behaviour of the rhabditid nematode Phasmarhabditis hermaphrodita to the grey garden slug Deroceras reticualtum. J. Parasitol. 87, 1349–1354.

    CAS  PubMed  Google Scholar 

  • Tan, L., and Grewal, P. S. 2001b. Pathogenicity of Moraxella osloensis, a bacterium associated with the nematode Phasmarhabditis hermaphrodita, to the slug Deroceras reticulatum. Appl. Environ. Microbiol. 67, 5010–5016.

    Article  CAS  PubMed  Google Scholar 

  • Tan, L. and Grewal, P. S. 2002. Endotoxin activity of Moraxella osloensis against the grey garden slug, Deroceras reticulatum. Appl. Environ. Microbiol. 68, 3943–3947.

    Article  CAS  PubMed  Google Scholar 

  • Tan, L. and Grewal, P. S. 2003. Characterization of the First Molluscicidal Lipopolysaccharide from Moraxella osloensis. Appl. Environ. Microbiol. 69, 3646–3649.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, D. C. 1944. Discussion on slugs. II. Field sampling for slugs. Ann. Appl. Biol. 31, 160–164.

    Article  Google Scholar 

  • Trevet, I. W. and Esslemont, J. M. 1938. A fungous parasite of the eggs of the gray field slug. J. Quecket Microscopical Club 4th series 1, 1–3.

    Google Scholar 

  • Wilson, M. J. and Grewal, P. S. 2005. Biology, production and formulation of slug-parasitic nematodes. In “Nematodes as Biocontrol Agents” (P. S. Grewal, R-U. Ehlers and D. I. Shapiro-Ilan, Eds.), pp. 421–430. CABI Publishing, Wallingford.

    Chapter  Google Scholar 

  • Wilson, M. J., Glen, D. M., and George, S. K. 1993a. The rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological control agent for slugs. Biocontrol Sci. Technol. 3, 503–511.

    Article  Google Scholar 

  • Wilson, M. J., Glen, D. M., George, S. K., and Butler, R. C. 1993b. Mass cultivation and storage of the rhabditid nematode Phasmarhabditis hermaphrodita, a biocontrol agent for slugs. Biocontrol Sci. Technol. 3, 513–521.

    Article  Google Scholar 

  • Wilson, M. J., Glen, D. M., George, S. K., Pearce, J. D., and Wiltshire, C. W. 1994a. Biological control of slugs in winter wheat using the rhabditid nematode, Phasmarhabditis hermaphrodita. Ann. Appl. Biol. 125, 377–390.

    Article  Google Scholar 

  • Wilson, M. J., Glen, D. M., George, S. K., and Wiltshire, C. W. 1994b. Mini-plot field experiments using the rhabditid nematode, Phasmarhabditis hermaphrodita, for biocontrol of slugs. Biocontrol Sci. Technol. 4, 103–113.

    Article  Google Scholar 

  • Wilson, M. J., Glen, D. M., Hughes, L. A., Pearce, J. D., and Rodgers, P. B. 1994c. Laboratory tests of the potential of entomopathogenic nematodes for the control of field slugs (Deroceras reticulatum). J. Invertebr. Pathol. 64, 182–187.

    Article  Google Scholar 

  • Wilson, M. J., Glen, D. M., George, S. K., and Hughes, L. A. 1995a. Biocontrol of slugs in protected lettuce using the rhabditid nematode Phasmarhabditis hermaphrodita. Biocontrol Sci. Technol. 5, 233–242.

    Article  Google Scholar 

  • Wilson, M. J., Glen, D. M., George, S. K., and Pearce, J. D. 1995b. Selection of a bacterium for the mass production of Phasmarhabditis hermaphrodita as a biocontrol agent for slugs. Fund. Appl. Nematol. 18, 419–425.

    Google Scholar 

  • Wilson, M. J., Glen, D. M., Pearce, J. D., and Rodgers, P. B. 1995c. Monoxenic culture of the slug parasite Phasmarhabditis hermaphrodita with different bacteria in solid and liquid phase. Fund. Appl. Nematol. 18, 159–166.

    Google Scholar 

  • Wilson, M. J., Hughes, L. A., Hamacher, G. M., Barahona, L. D. and Glen, D. M. 1996. Effects of soil incorporation on the efficacy of the rhabditid nematode Phasmarhabditis hermaphrodita as a biological control agent for slugs. Ann. Appl. Biol. 128, 117–126.

    Article  Google Scholar 

  • Wilson, M. J., Hughes, L. A., Jefferies, D., and Glen, D. M. 1999. Slugs, (Deroceras reticulatum and Arion ater. agg.) avoid soil treated with the rhabditid nematode Phasmarhabditis hermaphrodita. Biol. Control 16, 170–176.

    Article  Google Scholar 

  • Wilson, M. J., Hughes, L. A., Hamacher, G. M., and Glen, D. M. 2000. Effects of Phasmarhabditis hermaphrodita on non-target molluscs. Pest Man. Sci. 56, 711–716.

    Article  CAS  Google Scholar 

  • Young, A. G., Port, G. R., Craig, A. D., James, D. A., and Green, T. 1996. The use of refuge traps in assessing risk of slug damage: a comparison of trap material and bait. In “Slug and Snail Pests in Agriculture” (I. F. Henderson, Ed.), pp. 133–140. British Crop Protection Council, Farnham, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Wilson, M.J. (2007). Terrestrial mollusc pests. In: Lacey, L.A., Kaya, H.K. (eds) Field Manual of Techniques in Invertebrate Pathology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5933-9_37

Download citation

Publish with us

Policies and ethics