Skip to main content

Assessing impact of naturally occurring pathogens of forest insects

  • Chapter
  • 2665 Accesses

Abstract

Pathogens have long been known to play a major role in the population dynamics of many important forest insects. For many irruptive species, outbreaks are terminated by baculovirus epizootics that cause dramatic declines of host density. Such epizootics are well known for Lepidoptera such as gypsy moth, Lymantria dispar; Douglas fir tussock moth, Orgyia pseudotsugata; nun moth, L. monacha; pine beauty moth, Panolis flammea; forest tent caterpillar, Malacosoma disstria; western tent caterpillar, M. californicum pluviale, and the European larch budmoth, Zeiraphera diniana. Similar epizootics are known in sawflies (Hymenoptera: Diprionidae) including the European pine sawfly, Neodiprion sertifer; the European spruce sawfly, Gilpinia hercyniae and the red-headed pine sawfly, Neodiprion lecontei.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R. M. and May, R. M. 1979. Population biology of infectious diseases: Part I. Nature 280, 361–367.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, R. M. and May, R. M. 1980. Infectious diseases and population cycles of forest insects. Science 210, 658–661.

    Article  PubMed  Google Scholar 

  • Anderson, R. M. and May, R. M. 1981. The population dynamics of microparasites and their invertebrate hosts. Philos. Trans. R. Soc. Lond. Ser. B. 291, 451–524.

    Article  Google Scholar 

  • Andreadis, T. G. and Weseloh, R. M. 1990. Discovery of Entomophaga maimaiga in North American gypsy moth, Lymantria dispar. Proc. Natl. Acad. Sci. U.S.A. 87, 2461–2465.

    Article  CAS  PubMed  Google Scholar 

  • Auer, C. 1968. Erst Ergebnisse einfacher stochastischer modelluntersuchungen uber die ursachen der populationsbewegung des grauen larchenwicklers Zeiraphera diniana, Gn. (= Z. griseana Hb.) im Oberengadin, 1949/66. Z. Angew. Entomol., 62, 202–235.

    Google Scholar 

  • Baltensweiler, W. 1993. A contribution to the explanation of the larch bud moth cycle, the polymorphic fitness hypothesis. Oecologia 93, 251–255.

    Article  Google Scholar 

  • Baltensweiler, W. and Fischlin, A. 1988. The larch budmoth in the Alps. In “Dynamics of Forest Insect Populations: Patterns, Causes, Implications”.(A. A. Berryman Ed.), pp 331–351. Plenum Press, New York and London.

    Google Scholar 

  • Bellows, Jr. T. S., Van Driesche, R. G., and Elkinton, J. S. 1992. Life-table construction and analysis in the evaluation of natural enemies. Annu. Rev. Entomol. 37, 587–614.

    Article  Google Scholar 

  • Benz, G. 1974. Negative Ruckkoppelung durch Raum- und Nahrungskonkurrenz sowie zyklische Veranderung der Nahrungsgrundlage als Regelprinzip in der Populationsdynamik des Grauen Larchenwicklers, Zeiraphera diniana (Guenee) (Lep. Torticidae). Z. Angew. Entomol. 76, 196–228.

    Google Scholar 

  • Bird, F. T. and Elgee, D. E. 1957. A virus disease and introduced parasites as factors controlling the European spruce sawfly, Diprion hercyniae (Htg) in central new Brunswick. Can. Entomol. 89, 371–378.

    Article  Google Scholar 

  • Bowers, R. G., Begon, M., and Hodgkinson, D. E. 1993. Host-pathogen population cycles in forest insects? Lessons from simple models reconsidered. OIKOS 67, 529–538.

    Article  Google Scholar 

  • Briggs, C. J. and Godfray, H. C. J. 1995. The dynamics of insect-pathogen interactions in stage structured populations. Am. Nat. 145, 855–887.

    Article  Google Scholar 

  • Briggs, C. J., Haites, R. S., Barlow, N. D., and Godfray, H. C. J. 1995. The dynamics of insect-pathogen interactions in stage structured populations. In “Ecology of Infectious Diseases in Natural Populations” (B. T. Grenfell and A. P. Dobson, Eds.), pp. 295–326. University of Cambridge Press, Cambridge, UK.

    Chapter  Google Scholar 

  • Briggs, C. J. and Godfray, H. C. J. 1996. The dynamics of insect-pathogen interactions in seasonal environments. Theor. Pop. Biol. 50, 149–177.

    Article  Google Scholar 

  • Burand, J. P. and Park, E. J. 1992. Effect of nuclear polyhedrosis virus on the development and pupation of gypsy moth larvae. J. Invertebr. Pathol. 60, 171–175.

    Article  Google Scholar 

  • Carruthers, W. R., Corey, J. S., and Entwistle, P. E. 1988. Recovery of pine beauty moth nuclear polyhedrosis virus from pine foliage. J. Invertebr. Pathol. 52, 27–32.

    Article  Google Scholar 

  • Casagrande, R. A., Logan, P. A., and Wallner, W. E. 1987. Phenological model for gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), larvae and pupae. Environ. Entomol. 16, 556–562.

    Google Scholar 

  • Cooper, D., Corey, J. S., Theilmann, D. A., and Myers, J. H. 2003. Nucleopolyhedroviruses of forest and western tent caterpillars: cross-infectivity and evidence for activation of latent virus in high-density field populations. Ecol. Entomol. 28, 41–50.

    Article  Google Scholar 

  • D’Amico, V., Elkinton, J. S., Podgwaite, J. D., Slavicek J., McManus, M. L., and Burand, J. P. 1999. A field release of genetically engineered gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus (LdNPV). J. Invertebr. Pathol. 73, 260–268.

    Article  PubMed  Google Scholar 

  • Doane, C. C. 1970. Primary pathogens and their role in the development of an epizootic in the gypsy moth. J. Invertebr. Pathol. 15, 21–33.

    Article  Google Scholar 

  • Dwyer, G. 1991. The roles of density, stage, and patchiness in the transmission of an insect virus. Ecology 72, 559–574.

    Article  Google Scholar 

  • Dwyer, G. 1992. On the spatial spread of insect pathogens: theory and experiment. Ecology 73, 479–484.

    Article  Google Scholar 

  • Dwyer, G. 1994. Density dependence and spatial structure in the dynamics of insect pathogens. Am. Nat. 143, 533–562.

    Article  Google Scholar 

  • Dwyer, G. 1995. Simple models and complex interactions. In “Population Dynamics: New Approaches and Synthesis.” (N. Cappuccino and P. W. Price, Eds.), pp. 209–227. Academic Press, San Diego, CA.

    Google Scholar 

  • Dwyer, G. and Elkinton, J. S. 1993. Using simple models to predict virus epizootics in gypsy moth populations. J. Anim. Ecol. 61, 1–11

    Google Scholar 

  • Dwyer, G. A. and Elkinton, J. S. 1995. Host dispersal and the spatial spread of insect pathogens. Ecology 76, 1262–1275.

    Article  Google Scholar 

  • Dwyer, G., Elkinton, J. S., and Buonaccorsi, J. 1997. Host heterogeneity in susceptibility and disease dynamics: tests of a mathematical model. Am. Nat. 150, 685–707.

    Article  CAS  PubMed  Google Scholar 

  • Dwyer, G., Dushoff, J., and Elkinton., J. S. 2000. Pathogen-driven outbreaks in forest defoliators revisited: building models from experimental data. Am. Nat. 156, 105–120.

    Article  PubMed  Google Scholar 

  • Dwyer, G., Dushoff, J., and Yee, S. H. 2004. The combined effects of pathogens and predators on insect outbreaks. Nature. 430, 341–345.

    Article  CAS  PubMed  Google Scholar 

  • Elkinton, J. S. and Liebhold, A. M. 1990. Population dynamics of gypsy moth in N. America. Annu. Rev. Entomol. 35, 571–596.

    Google Scholar 

  • Elkinton, J. S., Buonaccorsi, J. P., Bellows, T. S., and Van Driesche, R. G. 1992. Marginal attack rate, k-values and density dependence in the analysis of contemporaneous mortality factors. Res. Pop. Ecol. 34, 29–44.

    Article  Google Scholar 

  • Elkinton, J. S., Healy, W. M., Buonaccorsi, J. P., Boettner, G. H., Hazzard, A. M., Smith, H. R., and Liebhold, A. M. 1996. Interactions among gypsy moths, white-footed mice and acorns. Ecology 77, 2332–2342.

    Article  Google Scholar 

  • Fuxa, J. R. and Tanada, Y. 1987. Epidemiological concepts applied to insect epizootiology. In “Epizootiology of Insect Diseases” (J. Fuxa and Y. Tanada, Eds.), pp. 3–21. John Wiley and Sons, New York.

    Google Scholar 

  • Glaser, R. W. 1915. Wilt of gypsy moth caterpillars. J. Agric. Res. 4, 101–128.

    Google Scholar 

  • Hajek, A. E., Humber, R. A., Elkinton, J. S., May, B., Walsh, S. R. A., and Silver, J. S. 1990. Allozyme and restriction fragment length polymorphism analyses confirm Entomophaga maimaiga responsible for 1989 epizootics in North American gypsy moth populations. Proc. Natl. Acad. Sci., USA. 87, 6979–6982.

    Article  CAS  PubMed  Google Scholar 

  • Hajek, A. E. and Soper, R. S. 1991. Within-tree location of gypsy moth, Lymantria dispar, larvae killed by Entomophaga maimaiga (Zygomycetes: Entomophthorales). J. Invertebr. Pathol. 58, 468–469.

    Article  Google Scholar 

  • Hajek, A. E., Butt, T. M., Strelow, L. I., and Gray, S. M. 1991a Detection of Entomophaga maimaiga (Zygomycetes: Entomophthorales) using enzyme linked immunosorbent assay (ELISA). J. Invertebr. Pathol. 58, 1–9.

    Article  Google Scholar 

  • Hajek, A. E., Humber, R. A., Walsh, S. R. A., and Silver, J. C. 1991b. Sympatric occurrence of two Entomophaga aulicae (Zygomycetes: Entomophthorales) complex species attacking forest Lepidoptera. J. Invertebr. Pathol. 58, 373–380.

    Article  Google Scholar 

  • Hajek, A. E., Carruthers, R. I., Larkin, T. M., and Soper, R. S. 1993. Modeling the dynamics of Entomophaga maimaiga (Zygomycetes: Entomophthorales) epizootics in gypsy moth (Lepidoptera: Lymantriidae) populations. Environ. Entomol. 22, 1172–1187.

    Google Scholar 

  • Henson, J. M. and French, R. 1993. The polymerase chain reaction and plant disease diagnosis. Annu. Rev. Phytopathol. 31, 81–109.

    Article  CAS  PubMed  Google Scholar 

  • Hochberg, M. E. 1989. The potential role of pathogens in biological control. Nature 337, 262–265.

    Article  CAS  PubMed  Google Scholar 

  • Hochberg, M. E. and Holt R. D. 1990. The coexistence of competing parasites: the role of cross-species infection. Am. Nat. 136, 517–541.

    Article  Google Scholar 

  • Holt, R. D. and Pickering, J. 1985. Infectious disease and species coexistence: a model of Lotka Volterra form. Am. Nat. 126, 196–211.

    Article  Google Scholar 

  • Ilyinykh, K V. and Chuikova, G. V. 1989. Identification of natural isolates of black arches moth (Lymantria monacha) nuclear polyhedrosis virus. Voprosy Virusologii 34, 84–89.

    Google Scholar 

  • Kaupp, W. J. and Ebling, P. M. 1993. Horseradish peroxidase labelled probes and enhanced chemiluminescence to detect baculoviruses in gypsy moth and eastern spruce budworm larvae. Virol. Methods 44, 89–98.

    Article  CAS  Google Scholar 

  • Keating, S. T., Burand, J. P., and Elkinton, J. S.. 1989. DNA hybridization assay for detection of gypsy moth nuclear polyhedrosis virus in infected gypsy moth (Lymantria dispar L) larvae. Appl. Environ. Microbiol. 55, 2749–2754.

    CAS  PubMed  Google Scholar 

  • Keating, S. T., Elkinton, J. S., Burand, J. P., Podgwaite, J. D., and Ferguson, C. S. 1991. Field evaluation of a DNA hybridization assay for nuclear polyhedrosis virus in gypsy moth (Lepidoptera: Lymantriidae) larvae. J. Econ. Entomol. 84, 1329–1333.

    CAS  PubMed  Google Scholar 

  • Kermack, W. O. and McKendrick, A. G. 1927. A contribution to the mathematical theory of epidemics. Proc. Royal Soc., Ser. A. 115, 700–721.

    Article  Google Scholar 

  • Kukan, B. and Myers, J. H. 1995. DNA Hybridization assay for detection of nuclear polyhedrosis virus in tent caterpillars. J. Invertebr. Pathol. 66, 231–236.

    Article  Google Scholar 

  • Kuno, E. 1971. Sampling error as a misleading artifact in “key factor analysis”. Res. Popul. Ecol. 13, 28–45.

    Article  Google Scholar 

  • Liebhold, A. M. 1994. Use and abuse of insect and disease models in forest pest management: past, present and future. In “Sustainable ecological systems: implementing an ecological approach to land management” (M. W. Covington and L. F. DeBano, Eds.), pp. 204–210. U.S. Dep. Agric. For. Serv. Tech. Rep. RM-247.

    Google Scholar 

  • Logan, J. A. 1994. In defense of big ugly models. Am. Entomol. 40, 202–206.

    Google Scholar 

  • Ma, M., Burkholder, J. K., Webb, R. E., and Hsu, H. T. 1984. Plastic-bead ELISA: an inexpensive epidemiological tool for detecting gypsy moth (Lepidoptera: Lymantriidae) nuclear polyhedrosis virus. J. Econ. Entomol. 77, 537–540.

    Google Scholar 

  • Maddox, J. V. 1987. Protozoan diseases. In “Epizootiology of Insect Diseases” (J. Fuxa and Y. Tanada, Eds.), pp. 417–452. John Wiley and Sons, New York.

    Google Scholar 

  • Manly, B. F. J. 1977. The determination of key factors from life table data. Oecologia 31, 111–117.

    Article  Google Scholar 

  • May, R. M. 1974. Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186, 645–647.

    Article  CAS  PubMed  Google Scholar 

  • May, R. M. 1976. Simple mathematical models with very complicated dynamics. Nature 261, 459–467.

    Article  CAS  PubMed  Google Scholar 

  • May, R. M. 1985. Regulation of populations with non-overlapping generations by micro-parasites: a purely chaotic system. Am. Nat. 125, 573–583.

    Article  Google Scholar 

  • Myers, J. H. 2000. Population fluctuations of the western tent caterpillar in southwest British Columbia. Pop. Ecol. 42, 231–241.

    Article  Google Scholar 

  • Myers, J. H. and Kukan, B. 1995. Changes in fecundity of tent caterpillars: a correlated character of disease resistance or sublethal effects of disease? Oecologia 103, 475–480.

    Article  Google Scholar 

  • Morris, R. F. 1963. The dynamics of epidemic spruce budworm populations. Mem. Entomol. Soc. Can., 311–332.

    Google Scholar 

  • Murray, K. D. and Elkinton, J. S. 1992. Vertical distribution of nuclear polyhedrosis virus-infected gypsy moth (Lepidoptera: Lymantriidae) larvae and effects on sampling for estimation of disease prevalence. J. Econ. Entomol. 85, 1865–1871

    Google Scholar 

  • Onstad, D. W. and Carruthers, R. I. 1990. Epizootiological models of insect diseases. Annu. Rev. Entomol. 35, 399–419.

    Article  Google Scholar 

  • O’Reilly, D R. and Miller, L. K. 1989. A baculovirus blocks insect molting by producing ecydysteroid UDP-glycosyl transferase. Science 245, 1110–1112.

    Article  PubMed  Google Scholar 

  • Podgwaite, J. D., Shields, K. S., Zerillo, R. T., and Bruen, R.B. 1979. Environmental persistence of the nucleopolyhedrosis virus of the gypsy moth, Lymantria dispar. Environ. Entomol. 8, 528–536.

    Google Scholar 

  • Podoler, H. and Rogers, D. 1975. A new method for the identification of key factors from life-table data. J. Anim. Ecol. 44, 85–114.

    Article  Google Scholar 

  • Rothman, L. D. and Myers, J. H. 1994. Nuclear polyhedrosis virus treatment effect on reproductive potential of western tent caterpillar (Lepidoptera: Lasiocampidae). Environ. Entomol. 23, 864–869.

    Google Scholar 

  • Royama, T. 1984. Population dynamics of the spruce budworm Choristoneura fumiferana. Ecol. Monogr. 54, 429–462.

    Article  Google Scholar 

  • Royama, T. 1992. “Analytical Population Dynamics.” Chapman and Hall, New York.

    Google Scholar 

  • Royama, T. 1996. A fundamental problem in key factor analysis. Ecology 77, 87–93.

    Article  Google Scholar 

  • Sheehan, K. A. 1989. The western spruce budworm model: structure and content. USDA Forest Service Gen. Tech. Rep. PNW GTR-241. 70 pp.

    Google Scholar 

  • Sharov, A. A. and Colbert, J. J. 1994. “Gypsy moth life system model, integration of knowledge and a user’s guide.” Final report on a cooperative research project developed by Department of Entomology, Virginia Polytechnic Institute and State University and USDA Forest Service, Northeastern Experiment Station.

    Google Scholar 

  • Thompson, C. G., Scott, D. W., and Wickman, B. E. 1981. Long-term persistence of the nuclear polyhedrosis virus of the Douglas-fir tussock moth, Orgyia pseudotsugata (Lepidoptera: Lymantriidae), in forest soil. Environ. Entomol 10, 254–255.

    Google Scholar 

  • Turchin, P. 1995. Population regulation: old arguments and a new synthesis. In “Population Dynamics: New Approaches & Synthesis” (N. Cappuccino, and P. W. Price, Eds.), pp. 19–41. Academic Press, San Diego, CA.

    Google Scholar 

  • Turchin, P. and Taylor, A. D. 1992. Complex dynamics in ecological time series. Ecology 73, 289–305.

    Article  Google Scholar 

  • Van Driesche, R. G. 1983. Meaning of “percent parasitism” in studies of insect parasitoids. Environ. Entomol. 12, 1611–1622.

    Google Scholar 

  • Van Driesche, R. G. and Bellows, T. S. 1988. Host and parasitoid recruitment for quantifying losses from parasitism, with reference to Pieris rapae and Cotesia glomerata. Ecol. Entomol. 13, 215–222.

    Article  Google Scholar 

  • Varley, G. C., Gradwell, G. R., and Hassell, M. P. 1973. “Insect Population Ecology an analytical approach.” University of California Press, Berkeley.

    Google Scholar 

  • Vezina, A. and Peterman, R. M. 1985. Tests of the role of a nuclear polyhedrosis virus in the population dynamics of its host, Douglas-fir tussock moth, Orgyia pseudotsugata (Lepidoptera: Lymantriidae). Oecologia 67, 260–266.

    Article  Google Scholar 

  • Weseloh, R. M. and Andreadis, T. G. 1992. Epizootiology of the fungus Entomophaga maimaiga, and its impact on gypsy moth populations. J. Invertebr. Pathol. 59, 133–141.

    Article  Google Scholar 

  • Weseloh, R. M., Andreadis, T. G., and Onstad, D. W. 1993. Modeling the influence of rainfall and temperature on the phenology of infection of gypsy moth, Lymantria dispar, larvae by the fungus Entomophaga maimaiga. Biol. Control 3, 311–318.

    Google Scholar 

  • Woods, S. A. and Elkinton, J. S. 1987. Bimodal patterns of mortality from nuclear polyhedrosis virus in gypsy moth (Lymantria dispar) populations. J. Invertebr. Pathol.50, 151–157.

    Article  Google Scholar 

  • Woods, S. A., Elkinton, J. S., Murray, K. D., Liebhold, A. M., Gould, J. R., and Podgwaite, J. D. 1991. Transmission dynamics of a nuclear polyhedrosis virus and predicting mortality in gypsy moth (Lepidoptera: Lymantriidae) populations. J. Econ. Entomol. 84, 423–430.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Elkinton, J.S., Burand, J. (2007). Assessing impact of naturally occurring pathogens of forest insects. In: Lacey, L.A., Kaya, H.K. (eds) Field Manual of Techniques in Invertebrate Pathology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5933-9_13

Download citation

Publish with us

Policies and ethics