Skip to main content

Sulfur in resistance to environmental stresses

  • Chapter
Book cover Sulfur in Plants An Ecological Perspective

Part of the book series: Plant Ecophysiology ((KLEC,volume 6))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55: 373-399

    CAS  PubMed  Google Scholar 

  • Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16: 2448-2462

    CAS  PubMed  Google Scholar 

  • Barroso C, Romero LC, Cejudo FJ, Vega JM, Gotor C (1999) Salt-specific regulation of the cytosolic O-acetylserine(thiol) lyase gene from Arabidopsis thaliana is dependent on abscisic acid. Plant Mol Biol 40: 729-736

    CAS  PubMed  Google Scholar 

  • Bartoli CG, Simontacchi M, Tambussi E, Beltrano J, Montaldi E, Puntarulo S (1999) Drought and watering-dependent oxidative stress: effect on antioxidant content in Triticum aestivum L. leaves. J Exp Bot 50: 375-383

    CAS  Google Scholar 

  • Bick JA, Seterdahl AT, Knaff DB, Chen YC, Pitcher LH, Zilinskas BA, Leustek T (2001) Regulation of the plant-type 5′-adenylyl sulfate reductase by oxidative stress. Biochemistry 40: 9040-9048

    CAS  PubMed  Google Scholar 

  • Boo YC, Jung J (1999) Water deficit-induced oxidative stress and antioxidative defenses in rice plants. J Plant Physiol 155: 255-261

    CAS  Google Scholar 

  • Brunner M, Kocsy G, Ruegsegger A, Schmutz D, Brunold C (1995) Effect of chilling on assimilatory sulphate reduction and glutathione synthesis in maize. J Plant Physiol 146: 743-747

    CAS  Google Scholar 

  • Brunold C, Landolt W, Lavanchy P (1983) SO2 and assimilatory sulfate reduction in beech leaves. Physiol Plant 59: 313-318

    CAS  Google Scholar 

  • Brunold C, Suter M, Lavanchy P (1987) Effect of high and low sulfate concentrations on adenosine 5′-phosphosulfate sulfotransferase activity from Lemna minor. Physiol Plant 70: 168-174

    CAS  Google Scholar 

  • Buchanan B, Gruissem W, Jones RL (2000) Biochemistry and Molecular Biology of Plants. Wiley, New Jersey

    Google Scholar 

  • Chameides WL, Kasibhatla PS, Yienger J, Levy H (1994) Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food-production. Science 264: 74-77

    CAS  PubMed  Google Scholar 

  • Clayton H, Knight MR, Knight H, McAinsh MR, Hetherington AM (1999) Dissection of the ozone-induced calcium signature. Plant J 17: 575-579

    CAS  PubMed  Google Scholar 

  • Coleman JOD, Blake-Kalff MMA, Davies TGE (1997) Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci 2: 144-151

    Google Scholar 

  • Colls J (2002) Air Pollution (2nd edition). Spon Press, London.

    Google Scholar 

  • Conklin PL, Last RL (1995) Differential accumulation of antioxidant messengerRNAs in Arabidopsis thaliana exposed to ozone. Plant Physiol 109: 203-212

    CAS  PubMed  Google Scholar 

  • Creissen G, Firmin J, Fryer M, Kular B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N, Wellburn A, Mullineaux P (1999) Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell 11: 1277-1291

    CAS  PubMed  Google Scholar 

  • Dat J, Pellinen R, Beeckman T, Van De Cotte B, Langebartels C, Kangasjarvi J, Inze D, Van Breusegem F (2003) Changes in hydrogen peroxide homeostastis trigger an active cell death process in tobacco. Plant J 33: 621-632

    CAS  PubMed  Google Scholar 

  • De Kok LJ (1990) Sulfur metabolism in plants exposed to atmospheric sulfur. In: Rennenberg H, Brunold C, De Kok LJ, Stulen I (eds), Sulfur Nutrition and Sulfur Assimilation in Higher Plants; Fundamental, Environmental, and Agricultural Aspects. SPB Academic, The Hague, pp 111-130

    Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8: 390-396

    CAS  PubMed  Google Scholar 

  • Dhindsa RS (1991) Drought stress, enzymes of glutathione metabolism, oxidation injury and protein-synthesis in Tortula ruralis. Plant Physiol 95: 648-651

    CAS  PubMed  Google Scholar 

  • Dixon DP, Cummins I, Cole DJ, Edwards R (1998) Glutathione-mediated detoxification systems in plants. Curr Opin Plant Biol 1: 258-260

    CAS  PubMed  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3: 3004.1-3004.10

    Google Scholar 

  • Dixon DP, Skipsey M, Grundy NM, Edwards R (2005) Stress-induced protein Sglutathionylation in Arabidopsis. Plant Physiol 138: 2233-2244

    CAS  PubMed  Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5: 193-198

    CAS  PubMed  Google Scholar 

  • Evans NH, McAinsh MR, Hetherington AM, Knight MR (2005) ROS perception in Arabidopsis thaliana: the ozone-induced calcium response. Plant J 41: 615-626

    PubMed  Google Scholar 

  • Farago S, Brunold C (1990) Regulation of assimilatory sulfate reduction by herbicide safeners in Zea mays L. Plant Physiol 94: 1808-1812

    CAS  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442-446

    CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17: 1866-1875

    CAS  PubMed  Google Scholar 

  • Foyer CH, Rennenberg H (2000) Regulation of glutathione biosynthesis and its role in abiotic and biotic stress defence In: Brunold C, Rennenberg H, De Kok LJ, Stulen I, Davidian J-C (eds), Sulfur Nutrition and Sulfur Assimilation in Higher Plants. Paul Haupt, Ber, pp 127-153

    Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109: 1047-1057

    CAS  PubMed  Google Scholar 

  • Gomez LD, Noctor G, Knight MR, Foyer CH (2004) Regulation of calcium signaling and gene expression by glutathione. J Exp Bot 55: 1851-1859

    CAS  PubMed  Google Scholar 

  • Gullner G, Komives T, Rennenberg H (2001) Enhanced tolerance of transgenic poplar plants overexpressing γ-glutamylcysteine synthetase towards chloroacetanilide herbicides. J Exp Bot 52: 971-979

    CAS  PubMed  Google Scholar 

  • Gutierrez-Marcos JF, Roberts MA, Campbell EI, Wray JL (1996) Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and ‘APS reductase’ activity. Proc Natl Acad Sci USA 93: 13377-13382

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge J (1999) Free Radicals in Biology and Medicine (3rd edition). Oxford University Press, Oxford

    Google Scholar 

  • Hänsch R, Lang C, Riebeseel E, Lindigkeit R, Gessler A, Rennenberg H, Mendel RR (2006) Plant sulfite oxidase as novel producer of H2O2 - combination of enzyme catalysis with a subsequent non-enzymatic reaction step. J Biol Chem 281: 6884-6888

    PubMed  Google Scholar 

  • Heath R, Taylor G (1997) Physiological processes and plant responses to ozone exposure. In: Sandermann H (ed.), Forest Decline and Ozone. Ecological Studies 127, Springer-Velag, Berlin, pp 317-368

    Google Scholar 

  • Hirai MY, Fujiwara T, Awazuhara M, Kimura T, Noji M, Saito K (2003) Global expression profiling of sulphur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-L-serine as a general regulator of gene expression in response to sulphur nutrition. Plant J 33: 651-663

    CAS  PubMed  Google Scholar 

  • Hu YC, Schmidhalter U (1998) Spatial distributions and net deposition rates of mineral elements in the elongating wheat (Triticum aestivum L.) leaf under saline soil conditions. Planta 204: 212-219

    CAS  Google Scholar 

  • Joo JH, Wang S, Chen JG, Jones AM, Federoff NV (2005) Different signaling and cell death roles of heterotrimeric G protein α and β subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17: 957-970

    CAS  PubMed  Google Scholar 

  • Kandlbinder A, Finkemeier I, Wormuth D, Hanitzsch M, Dietz KJ (2004) The antioxidant status of photosynthesizing leaves under nutrient deficiency: redox regulation, gene expression and antioxidant activity in Arabidopsis thaliana. Physiol Plant 120: 63-73

    CAS  PubMed  Google Scholar 

  • Kangasjarvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defense systems induced by ozone. Plant Cell Environ 17: 783-794

    CAS  Google Scholar 

  • Kanofsky JR, Sima PD (1995) Singlet oxygen generation from the reaction of ozone with plant-leaves. J Biol Chem 270: 7850-7852

    CAS  PubMed  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9: 627-640

    CAS  PubMed  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation response to excess excitation energy in Arabidopsis. Science 284: 654-657

    CAS  PubMed  Google Scholar 

  • Kocsy G, Brunner M, Rüegsegger A, Stamp P, Brunold C (1996) Glutathione synthesis in maize genotypes with different sensitivities to chilling. Planta 198: 365-370

    CAS  Google Scholar 

  • Kocsy G, Owttrim G, Brander K, Brunold C (1997) Effect of chilling on the diurnal rhythm of enzymes involved in protection against oxidative stress in a chilling-tolerant and a chilling-sensitive maize genotype. Physiol Plant 99: 249-254

    CAS  Google Scholar 

  • Kocsy G, von Ballmoos P, Suter M, Rűgsegger A, Galli U, Szalai G, Galiba G, Brunold C (2000) Inhibition of glutathione synthesis reduces chilling tolerance in maize. Planta 211: 528-536

    CAS  PubMed  Google Scholar 

  • Kocsy G, von Ballmoos P, Ruegsegger A, Szalai G, Galiba G, Brunold C (2001) Increasing the glutathione content in a chilling-sensitive maize genotype using safeners increased protection against chilling-induced injury. Plant Physiol 127: 1147-1156

    CAS  PubMed  Google Scholar 

  • Kocsy G, Szalai G, Galiba G (2004) Effect of osmotic stress on glutathione and hydroxymethylglutathione accumulation in wheat. J Plant Physiol 161: 785-794

    CAS  PubMed  Google Scholar 

  • Kopriva S, Koprivova A (2004) Plant adenosine 5′-phosphosulphate reductase: the past, the present, and the future. J Exp Bot 55: 1775-1783

    CAS  PubMed  Google Scholar 

  • Kopriva S, Rennenberg H (2004) Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. J Exp Bot 55: 1831-1842

    CAS  PubMed  Google Scholar 

  • Kopriva S Jones S, Koprivova A, Suter M, von Ballmoos P, Brander K, Fluckiger J, Brunold C (2001) Influence of chilling stress on the intercellular distribution of assimilatory sulphate reduction and thiols in Zea mays. Plant Biol 3: 24-31

    Google Scholar 

  • Kranner I (2002) Glutathione status correlates with different degrees of desiccation tolerance in three lichens. New Phytol 154: 451-460

    CAS  Google Scholar 

  • Krupa SV, Manning WJ (1988) Atmospheric ozone - formation and effects on vegetation. Environ Poll 50: 101-137

    CAS  Google Scholar 

  • Lamb C, Dixon R (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48: 51-275

    Google Scholar 

  • Langebartels C, Wohlgemuth H, Kschieschan S, Grun S, Sandermann H (2002) Oxidative burst and cell death in ozone-exposed plants. Plant Physiol Biochem 40: 67-575

    Google Scholar 

  • Lappartient AG, Touraine B (1997) Glutathione-mediated regulation of ATP sulphurylase activity, SO42- uptake and oxidative stress responses to intact canola roots. Plant Physiol 114: 177-183

    CAS  PubMed  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138: 882-897

    CAS  PubMed  Google Scholar 

  • Leipner J, Frachebound Y, Stamp P (1999) Effect of growing-season on the photosynthetic apparatus and leaf antioxidative defenses in two maize genotypes at different chilling tolerance. Environ Exp Bot 42: 129-139

    CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583-593

    PubMed  Google Scholar 

  • Logan BA, Monteiro G, Kornyeyev D, Payton P, Allen RD, Holaday AS (2003) Transgenic overproduction of glutathione reductase does not protect cotton, Gossypium hirsutum (Malvaceae), from photoinhibition during growth under chilling conditions. Am J Bot 90: 1400-1403

    Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 127-158

    CAS  PubMed  Google Scholar 

  • Mauzerall DL, Wang X (2001) Protecting agricultural crops from the effects of tropospheric ozone exposure: reconciling science and standard setting in the United States, Europe and Asia. Annu Rev Energy Environ 26: 237-268

    Google Scholar 

  • May MJ, Vernoux T, Leaver C, Van Montagu M, Inze D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49: 649-667

    CAS  Google Scholar 

  • Mehlhorn H, Tabner BJ, Wellburn AR (1990) Electron-spin-resonance evidence for the formation of free-radicals in plants exposed to ozone. Physiol Plant 79: 77-383

    Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt tolerant tomato species Lycopersicon pennellii. J Exp Bot 55: 1105-1113

    CAS  PubMed  Google Scholar 

  • Moldau H, Bichele I (2002) Plasmalemma protection by the apoplast as assessed from above-zero ozone concentrations in leaf intercellular air spaces. Planta 214: 484-487

    CAS  PubMed  Google Scholar 

  • Morant M, Bak S, Moller BL, Werck-Reichhart D (2003) Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotech 14: 151-162

    CAS  PubMed  Google Scholar 

  • Mou Z, Fan WH, Dong XN (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113: 935-944

    CAS  PubMed  Google Scholar 

  • Műller-Moulé P, Havaux M, Niyogi KK (2003) Zeaxanthin deficiency enhances the high light sensitivity of an ascorbate-deficient mutant of Arabidopsis. Plant Physiol 133: 748-760

    PubMed  Google Scholar 

  • Mullineaux P, Rausch T (2005) Glutathione, photosynthesis and redox regulation of stress-responsive gene expression. Photosynth Res 86: 459-474

    CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25: 239-250

    CAS  PubMed  Google Scholar 

  • Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C (2004) Arabidopsis thaliana plants over expressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J 38: 940-953

    CAS  PubMed  Google Scholar 

  • Nieto-Sotelo J, Ho TH (1986) Effect of heat shock on the metabolism of glutathione in maize roots. Plant Physiol 82: 1031-1035

    CAS  PubMed  Google Scholar 

  • Nikiforova V, Freitag J, Kempa S, Adamik M, Hesse H, Hoefgen R (2003) Transcriptome analysis of sulphur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J 33: 633-650

    CAS  PubMed  Google Scholar 

  • Noctor G, Strohm M, Jouanin L, Kunert KJ, Foyer CH, Rennenberg H (1996) Synthesis of glutathione in leaves of transgenic poplar overexpressing γglutamylcysteine synthetase. Plant Physiol 112: 1071-1078

    CAS  PubMed  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis compartmentation, and transport in the control of glutathione homeostasis and signaling. J Exp Bot 53: 1283-1304

    CAS  PubMed  Google Scholar 

  • North KA, Koprivova A, Kopriva S (2005) Investigating the effects of abiotic stress on the sulfate assimilation pathway in Arabidopsis. In: Saito K, De Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Sirko A, Rennenberg H (eds), Sulfur Transport and Assimilation in Plants in the Post Genomic Era. Backhuys, Leiden, The Netherlands, pp 221-224

    Google Scholar 

  • Op den Camp R, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15: 2320-2332

    CAS  PubMed  Google Scholar 

  • Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H, Kangasjarvi J (2000) Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12: 1849-1862

    CAS  PubMed  Google Scholar 

  • Payton P, Allen RD, Trolinder N, Holaday AS (1997) Over-expression of chloroplast-targeted Mn superoxide dismutase in cotton (Gossypium hirsutum L., cv. Coker 312) does not alter the reduction of photosynthesis after short exposures to low temperature and high light intensity. Photosynth Res 52: 233-244

    CAS  Google Scholar 

  • Payton P, Webb R, Kornyeyev D, Allen R, Holaday AS (2001) Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. J Exp Bot 52: 2345-2354

    CAS  PubMed  Google Scholar 

  • Pellinen R, Palva T, Kangasjarvi J (1999) Subcellular localization of ozoneinduced hydrogen peroxide production in birch (Betula pendula) leaf cells. Plant J 20: 349-356

    CAS  PubMed  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chillinginduced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 5: 65-74

    Google Scholar 

  • Price A, Lucas PW, Lea PJ (1990) Age-dependent damage and glutathione metabolism in ozone fumigated barley - a leaf section approach. J Exp Bot 41: 1309-1317

    CAS  Google Scholar 

  • Price AH, Taylor A, Ripley SJ, Griffiths A, Trewavas AJ, Knight MR (1994) Oxidative signals in tobacco increase cytosolic calcium. Plant Cell 6: 1301-1310

    CAS  PubMed  Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17: 603-614

    CAS  PubMed  Google Scholar 

  • Rao MV, Koch JR, Davis KR (2000) Ozone: a tool for probing programmed cell death in plants. Plant Mol Biol 44: 45-358

    Google Scholar 

  • Rentel MC and Knight MR (2004) Oxidative stress induced Ca2+-signaling in Arabidopsis. Plant Physiol 135: 1471-1479

    CAS  PubMed  Google Scholar 

  • Romero LC, Dominguez-Solis JR, Gutierrez-Alcala G, Gotor C (2001) Salt regulation of O-acetylserine(thiol) lyase in Arabidopsis thaliana and increased tolerance in yeast. Plant Physiol Biochem 39: 643-647

    CAS  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/ glutathione peroxidase. Plant Cell Physiol 41: 1229-1234

    CAS  PubMed  Google Scholar 

  • Ruiz JM, Blumwald E (2002) Salinity-induced glutathione synthesis in Brassica napus. Planta 214: 965-969

    CAS  PubMed  Google Scholar 

  • Runeckles VC, Vaartnou M (1997) EPR evidence for superoxide anion formation in leaves during exposure to low levels of ozone. Plant Cell Environ 20: 306-314

    CAS  Google Scholar 

  • Saitanis CJ, Karandinos MG (2002) Effects of ozone on tobacco (Nicotiana tabacum L.) varieties. J Agron Crop Sci 188: 51-58

    CAS  Google Scholar 

  • Sandermann H, Ernst D, Heller W, Langebartels C (1998) Ozone: an abiotic elicitor of plant defence reactions. Trends Plant Sci 3: 47-50

    Google Scholar 

  • Schraudner M, Moeder W, Wiese C, Van Camp W, Inze D, Langebartels C, Sandermann H (1998) Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3. Plant J 16: 235-245

    CAS  Google Scholar 

  • Sen Gupta A, Alscher RG, McCune D (1991) Response of photosynthesis and cellular antioxidants to ozone in Populus Leaves. Plant Physiol 96: 650-655

    CAS  Google Scholar 

  • Sharma YK, Davis KR (1997) The effects of ozone on antioxidant responses in plants. Free Rad Biol Med 23: 480-488

    CAS  PubMed  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125: 27-58

    CAS  Google Scholar 

  • Strohm M, Jouanin L, Kunert KJ, Pruvost C, Polle A, Foyer CH, Rennenberg H (1995) Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula X P.alba) overexpressing glutathione synthetase. Plant J 7: 141-145

    CAS  Google Scholar 

  • Strohm M, Eiblmeier M, Langebartels C, Jouanin L, Polle A, Sandermann H, Rennenberg H (1999) Responses of transgenic poplar (Populus tremula × P. alba) overexpressing glutathione synthetase or glutathione reductase to acute ozone stress: visible injury and leaf gas exchange. J Exp Bot 50: 365-374

    CAS  Google Scholar 

  • Takahashi M, Sasaki Y, Ida S, Morikawa H (2001) Nitrite reductase gene enrichment improves assimilation of NO(2) in Arabidopsis. Plant Physiol 126: 731-741

    CAS  PubMed  Google Scholar 

  • Takahashi M, Nakagawa M, Sakamoto A, Ohsumi C, Matsubara T, Morikawa H (2006) Atmospheric nitrogen dioxide gas is a plant vitalization signal to increase plant size and the contents of cell constituents. New Phytol 168: 149-154

    Google Scholar 

  • Tamaoki M, Nakajima N, Kubo A, Aono M, Matsuyama T, Saji H (2003) Transcriptome analysis of O3-exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression. Plant Mol Biol 53: 443-456

    CAS  PubMed  Google Scholar 

  • Tausz M, Wonisch A, Peters J, Jimenez MS, Morales D, Grill D (2001) Shortterm changes in free radical scavengers and chloroplast pigments in Pinus canariensis needles as affected by mild drought stress. J Plant Physiol 158: 213-219

    CAS  Google Scholar 

  • Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos O, Krähenbuhl U, Op den Camp R, Brunold C (2002) Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 5′-phosphosulphate reductase is more susceptible to negative control by thiols than ATP sulphurylase. Plant J 31: 729-740

    CAS  PubMed  Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inze D, May MJ, Sung ZR (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12: 97-109

    CAS  PubMed  Google Scholar 

  • Wagner U, Edwards R, Dixon DP, Mauch F (2002) Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol 49: 515-532

    PubMed  Google Scholar 

  • Westerman S, Weidner W, De Kok LJ, Stulen I (2000) Effect of H2S exposure on S35-sulfate uptake, transport and utilization in curly kale. Phyton 40: 293-302

    CAS  Google Scholar 

  • Westerman S, Blake-Kalff MMA, De Kok LJ, Stulen I (2001) Sulfate uptake and utilization by two varieties of Brassica oleracea with different sulfur needs as affected by atmospheric H2S. Phyton 41: 49-61

    CAS  Google Scholar 

  • Will B, Jouanin L, Rennenberg H (2001) Protection from paraquat-mediated photo-oxidative stress by glutathione in poplar (Populus tremula × P.alba) plants. Plant Biol 3: 272-278

    CAS  Google Scholar 

  • Wohlgemuth H, Mittelstrass K, Kschieschan S, Bender J, Weigel HJ, Overmyer K, Kangasjarvi J, Sandermann H, Langebartels C (2002) Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environ 25: 717-726

    CAS  Google Scholar 

  • Xu CC, Li L, Kuang T (2000) The inhibited xanthophyll cycle is responsible for the increase in sensitivity to low temperature photoinhibition in rice leaves fed with glutathione. Photosynth Res 65: 107-114

    CAS  PubMed  Google Scholar 

  • Yoshida S, Tam aoki M, Shikano T, Nakajima N, Ogawa D, Ioki M, Aono M, Kubo A, Kamada H, Inoue Y, Saji H (2006) Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol 47: 304-308

    CAS  PubMed  Google Scholar 

  • Zimmermann P, Hennig L, Gruissem W (2005) Gene-expression analysis and network discovery using Genevestigator. Trends Plant Sci 10: 407-409

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

North, K.A., Kopriva, S. (2007). Sulfur in resistance to environmental stresses. In: Hawkesford, M.J., De Kok, L.J. (eds) Sulfur in Plants An Ecological Perspective. Plant Ecophysiology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5887-5_7

Download citation

Publish with us

Policies and ethics