Skip to main content

Part of the book series: Plant Ecophysiology ((KLEC,volume 6))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbès C, Karam A, Isfan D, Parent LE (1992) Fertilisation soufrée du soja. Can J Plant Sci 72: 377-382

    Google Scholar 

  • Anderson DW, Paul EA, Arnaud RJ (1974) Extraction and characterization of humus with reference to clay-associated humus. Can J Soil Sci 54: 317-323

    Article  CAS  Google Scholar 

  • Anderson DW, Saggar S, Bettany JR, Stewart JWB (1981) Particle size fractions and their use in studies of soil organic matter. I. The nature and distribution of forms of carbon, nitrogen and sulfur. Soil Sci Soc Am J 45: 767-772

    CAS  Google Scholar 

  • Anderson JW, Fitzgerald MA (2001) Physiological and metabolic origin of sulphur for the synthesis of seed storage proteins. J Plant Physiol 158: 447-456

    Article  CAS  Google Scholar 

  • Angus JF, Gardner PA, Kirkegaard JA, Desmarchelier JM (1994) Biofumigation: Isothiocyanates released from Brassica roots inhibit growth of the take-all fungus. Plant Soil 162: 107-112

    Article  CAS  Google Scholar 

  • Anthoni JF (2000) Soil ecology at http://seafriends.org.nz/enviro/soil/ecology.htm (extracted on August 8, 2006)

  • Asare E, Scarisbrick DH (1995) Rate of nitrogen and sulphur fertilizers on yield, yield components and seed quality of oilseed rape Brassica napus L. Field Crops Res 44: 41-46

    Article  Google Scholar 

  • Aulakh MS (2003) Crop responses to sulphur nutrition. In: Abrol YP, Ahmad A (eds), Sulphur in Plants. Kluwer Academic, Dordrecht, The Netherlands, pp 341-358

    Google Scholar 

  • Bell DT, Koeppe DE (1972) Noncompetitive effects of giant foxtail on the growth of corn. Agron J 64: 321-325

    Google Scholar 

  • Bettany JR, Stewart JWB, Halstead EH (1973) Sulfur fractions and carbon, nitrogen, and sulfur relationships in grassland, forest, and associated transitional soils. Soil Sci Soc Am J 37: 915-918

    Article  CAS  Google Scholar 

  • Bettany JR, Stewart JWB, Saggar S (1979) The nature and forms of sulfur in organic matter fractions of soils selected along an environmental gradient. Soil Sci Soc Am J 43: 981-985

    Article  CAS  Google Scholar 

  • Bettany JR, Saggar S, Stewart JWB (1980) Comparison of the amount and forms of sulfur in soil organic matter fractions after 65 years of cultivation. Soil Sci Soc Am J 44: 70-75

    CAS  Google Scholar 

  • Blankenburg D (2002) Untersuchungen zur Schwefelversorgung von Gemuesepflanzen. Grauer, Beuren, Germany

    Google Scholar 

  • Bloem E (1998) Schwefel-Bilanz von Agraroekosystemen unter besonderer Beruecksichtigung hydrologischer und bodenphysikalischer Standorteigenschaften. FAL Agric Res 192: special 156 pp

    Google Scholar 

  • Bloem E, Haneklaus S, Schnug E (2001) Significance of the sulfur nutrition for the pharmaceutical quality of medicinal plants. Proc 13th World Fertilizer Congress, Beijing, China, pp 1557-1563

    Google Scholar 

  • Bloem E, Haneklaus S, Schroetter S, Schnug E (2000) Aspects of agronomical and physiological research on sulfur deficiency in agricultural crops. In: Plant Sulfur Research in Europe. FAL Agric Res 218: 11-15

    Google Scholar 

  • Bloem E, Haneklaus S, Sparovek G, Schnug E (2001) Spatial and temporal variability of sulphate concentration in soils. Comm Soil Sci Plant Anal 32: 1391-1403

    Article  CAS  Google Scholar 

  • Bloem E, Haneklaus S, Schnug E (2004) Influence of nitrogen and sulphur fertilisation on the alliin content of onions and garlic. J Plant Nutr 27: 1827-1839

    Article  CAS  Google Scholar 

  • Borek C (2006) Garlic reduces dementia and heart-disease risk. J Nutr 136: 810-812

    Google Scholar 

  • Borek V, Morra MJ, Brown PD, McCaffrey JP (1995) Transformation of the glucosinolate-derived allelochemicals allyl isothiocyanate and allylnitrile in soil. J Agric Food Chem 43: 1935-1940

    Article  CAS  Google Scholar 

  • Borek V, Morra MJ, McCaffrey JP (1996) Myrosinase activity in soil extracts. Soil Sci Soc Am J 60: 1792-1797

    Article  CAS  Google Scholar 

  • Brown PD, Morra MJ (1996) Hydrolysis products of glucosinolates in Brassica napus tissues as inhibitors of seed germination. Plant Soil 181: 307-316

    Article  CAS  Google Scholar 

  • Buskov S, Serra B, Rosa E, Sorensen H, Sorensen JC (2002) Effects of intact glucosinolates and products produced from glucosinolates in myrosinasecatalyzed hydrolysis on the potato cyst nematode Globodera rostochiensis Cv. Woll. J Agric Food Chem 50: 690-695

    Article  CAS  PubMed  Google Scholar 

  • Cerda A, Martinez V, Caro M, Fernandez FG (1984) Effect of sulfur deficiency and excess on yield and sulfur accumulation in tomato plants. J Plant Nutr 7: 1529-1543

    Article  CAS  Google Scholar 

  • Chapman SJ (1987) Microbial sulphur in some Scottish soils. Soil Biol Biochem 19: 301-305

    Article  CAS  Google Scholar 

  • Clark TJ (2002) Sulfur. http://www.vitamins-minerals.tv/minerals/sulfur.htm extracted on August 1, 2006

  • Cohen JH, Kristal AR, Stanford JL (2000) Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst 92: 61-68

    Article  CAS  PubMed  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. In: Advanced Series in Agricultural Sciences. Springer, Heidelberg, Germany

    Google Scholar 

  • Dedourge O, Vong P-C, Laserre-Joulin F, Benizri E, Guckert A (2003) Immobilization of sulphur-35, microbial biomass and arylsulphatase activity in soils from field-grown rape, barley and fallow. Biol Fertil Soils 38: 181-185

    Article  CAS  Google Scholar 

  • De Kok LJ, Westerman S, Stuiver CEE, Stulen I (2000) Atmospheric H2S as plant sulfur source: interaction with pedospheric sulfur nutrition - a case study with Brassica oleracea L. In: Brunold C, Rennenberg H, De Kok LJ, Stulen I, Davidian J-C (eds), Sulfur Nutrition and Sulfur Assimilation in Higher Plants: Molecular, Biochemical and Physiological Aspects. Paul Haupt, Bern, pp 41-56

    Google Scholar 

  • Di Candilo M, Leoni C, Silvestri GP (1993) Sulfur, phosphorus and potassium in processing tomato grown in high alkaline soil. Adv Hortic Sci 7: 57-60

    Google Scholar 

  • Donald D, Chapman SJ (1998) Use of powdered elemental sulphur as a sulphur source for grass and clover. Commun Soil Sci Plant Anal 29: 1315-1328

    Article  CAS  Google Scholar 

  • Drobnica L, Kristian P, Augustin J (1977) The chemistry of the NCS group. In: Patai S (ed.), The Chemistry of Cyanates and Their Derivates. Part 2. Wiley, New York, pp 1003-1197

    Chapter  Google Scholar 

  • Eppendorfer WH, Eggum BO (1992) Dietary fibre, sugar, starch and amino acid content of kale, ryegrass and seed of rape and field beans as influenced by Sand N-fertilization. Plant Foods Human Nutr 42: 359-371

    Article  CAS  Google Scholar 

  • Eriksen J (1996) Incorporation of S into soil organic matter in the field as determined by the natural abundance of stable S isotopes. Biol Fertil Soils 22: 149-155

    Article  Google Scholar 

  • Eriksen J, Murphy MD, Schnug E (1998) The soil sulphur cycle. In: Schnug E (ed.), Sulphur in Agroecosystems. Kluwer Academic, Dordrecht, The Netherlands, pp 39-74

    Google Scholar 

  • Fenwick GR, Griffiths NM (1981) The identification of the goitrogen, (-)5-vinyloxazolidine-2-thione goitrin, as a bitter principle of cooked brusselssprouts Brassica oleracea L. var. Gemmifera. Z Lebensmittel Untersuchung Forsch 172: 90-92

    Article  CAS  Google Scholar 

  • Ferguson LR (2006) Nutrigenomics - integrating genomic approaches intonutrition research. Molecul Diagn Ther 10: 101-108

    CAS  Google Scholar 

  • Fitzgerald JW (1978) Naturally occurring organosulfur compounds in soil. In: Nriagu JO (ed.), Sulfur in the Environment, Part II. Wiley, New York, pp 391-443

    Google Scholar 

  • Freney JR, Spencer K (1960) Soil sulphate changes in the presence and absence of growing plants. Aust J Agric Res 11: 339-345

    Article  CAS  Google Scholar 

  • Friedman M (1994) Improvement in the safety of foods by SH-containing aminoacids and peptides a review. J Agric Food Chem 42: 3-20

    Article  CAS  Google Scholar 

  • Ganeshamurthy AN, Nielsen NE (1990) Arylsulphatase and the biochemical mineralization of soil organic sulphur. Soil Biol Biochem 22: 1163-1165

    Article  CAS  Google Scholar 

  • Ganeshamurthy AN, Reddy KS (2000) Effect of integrated use of farmyard manure and sulphur in a soybean and wheat cropping system, on nodulation, dry matter production and chlorophyll content of soybean on swell-shrink soils in central India. J Agron Crop Sci 185: 91-97

    Article  Google Scholar 

  • Gassner A, Fleckenstein J, Haneklaus S, Schnug E (2002) Spatial speciation - a new approach to assess soil analysis methods. Commun Soil Sci Plant Anal 33: 3347-3357

    Article  CAS  Google Scholar 

  • Germida JJ, Wainwright M, Gupta VVSR (1993) Biochemistry of sulfur cycling in soil. In: Stotzky G, Bollag J-M (eds), Soil Biochemistry 7. Marcel Dekker, New York, pp 1-53

    Google Scholar 

  • Ghani A, McLaren RG, Swift RS (1993) Mobilization of recently formed soil organic sulphur. Soil Biol Biochem 25: 1739-1744

    Article  CAS  Google Scholar 

  • Giovanelli J, Mudd SH, Datko AH (1980) Sulfur amino acids in plants. In: Miflin BJ (ed.), The Biochemistry of Plants, Vol. 5. Academic Press, New York, pp 453-505

    Google Scholar 

  • Giovannuci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC (2003) A prospective study of cruciferous vegetables and prostate cancer. Cancer Epidemiol. Biomarkers Prev 12: 1403-1409

    Google Scholar 

  • Girma K, Mosali J, Freeman KW, Raun WR, Martin KL, Thomason WE (2005) Forage and grain yield response to applied sulfur in winter wheat as influenced by source and rate. J Plant Nutr 28: 1541-1553

    Article  CAS  Google Scholar 

  • Gould DH, Dargatz DA, Garry FB, Hamar DH, Ross PF (2002) Potentially hazardous sulfur conditions on beef cattle ranches in the United States. JAVMA 221: 673-677

    PubMed  Google Scholar 

  • Grayston SJ, Germida JJ (1991) Sulfur-oxidizing bacteria as plant growth promoting rhizobacteria for canola. Can J Microbiol 37: 521-529

    Article  CAS  Google Scholar 

  • Grimble RF (2006) The effects of sulfur amino acid intake on immune functions in humans. J Nutr 136: 1660S-1665S

    CAS  PubMed  Google Scholar 

  • Gupta VVSR, Germida JJ (1988) Populations of predatory protozoa in field soils after 5 years of elemental S fertilizer application. Soil Biol Biochem 20: 787-791

    Article  CAS  Google Scholar 

  • Han KW, Yoshida T (1982) Sulfur mineralization in rhizosphere of lowland rice. Soil Sci Plant Nutr 28: 379-387

    CAS  Google Scholar 

  • Hands ES (2000) Nutrients in Food. Lippincott/Williams & Wilkins, Baltimore, MD

    Google Scholar 

  • Haneklaus S, Schnug E (1992) Baking quality and sulphur content of wheat. II. Evaluation of the relative importance of genetics and environment including sulphur fertilisation. Sulphur in Agric 16: 335-338

    Google Scholar 

  • Haneklaus S, Evans E, Schnug E (1992) Baking quality and sulphur content of wheat. I. Relations between sulphur and protein content and loaf volume. Sulphur in Agric 16: 31-34

    Google Scholar 

  • Haneklaus S, Murphy DP, Nowak G, Schnug E (1995) Effects of the timing of sulphur on yield and yield components of wheat. J Plant Nutr Soil Sci 158: 83-86

    Article  Google Scholar 

  • Haneklaus S, Knudsen L, Schnug E (1998) Minimum factors in the mineral nutrition of field grown sugar beets in northern Germany and eastern Denmark. Asp Appl Biol 52: 57-64

    Google Scholar 

  • Haneklaus S, Bloem E, Schnug E (2003) The global sulphur cycle and its links to plant environment. In: Abrol YP, Ahmad A (eds), Sulphur in Plants. Kluwer Academic, Dordrecht, The Netherlands, pp 1-28

    Google Scholar 

  • Haneklaus S, Bloem E, Schnug E, De Kok LJ, Stulen I (2006) Sulfur. In: Barker AV, Pilbeam DJ (eds), Handbook of Plant Nutrition. Taylor & Francis, Boca Raton, FL, pp 183-238

    Google Scholar 

  • Haramoto ER, Gallandt ER (2005) Brassica cover cropping: I. Effects on weed and crop establishment. Weed Sci 53: 695-701

    Article  CAS  Google Scholar 

  • Harris JC, Cottrell SL, Plummer S, Lloyd D (2001) Antimicrobial properties of Allium sativum garlic. Appl Microbiol Biotechnol 57: 282-286

    Article  CAS  PubMed  Google Scholar 

  • Hinds AA, Lowe LE (1980) Distribution of carbon, nitrogen, sulphur and phosphorus in particle-size separates from gleysolic soils. Can J Soil Sci 60: 783-786

    Article  CAS  Google Scholar 

  • Hitsuda K, Yamada M, Klepker D (2005) Sulfur requirement of eight crops at early stages of growth. Agron J 97: 155-159

    CAS  Google Scholar 

  • Hocking PJ, Randall PJ, Pinkerton A (1987) Sulphur nutrition of sunflower (Helianthus annuus) as affected by nitrogen supply: effects on vegetative growth, the development of yield components, and seed yield and quality. Field Crops Res 16: 157-175

    Article  Google Scholar 

  • Hojjati SM (1976) Amino acid pattern of kidney beans grown under different S and K regimes. Agron J 68: 668-671

    Article  CAS  Google Scholar 

  • Hu Z, Yang Z, Xu C, Haneklaus S, Cao Z, Schnug E (2002) Effect of crop growth on the distribution and mineralization of soil sulfur fractions in the rhizosphere. J Plant Nutr Soil Sci 165: 249-254

    Article  CAS  Google Scholar 

  • Hu Z, Haneklaus S, Wang S, Xu C, Cao Z, Schnug E (2003) Comparison of mineralization and distribution of soil sulfur fractions in the rhizosphere of oilseed rape and rice. Commun Soil Sci Plant Anal 15-16: 2243-2257

    Article  CAS  Google Scholar 

  • Hu ZY, Shen H (1997) Study on the bioavailability of soil organic S fractions. J Nanjing Univ Natural Sci 33: 250-252 (in Chinese)

    Google Scholar 

  • Ichikawa Y, Hayami H, Sugiyama T, Amann M, Schoepp W (2001) Forecast of sulfur deposition in Japan for various energy supply and emission control scenarios. Water Air Soil Pollut 130: 301-306

    Article  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere: a critical review. Plant Soil 205: 25-44

    Article  CAS  Google Scholar 

  • Kawabata J, Fukushi Y, Hayashi R, Suzuki K, Mishima Y, Mizutani J (1989) 8-Methylsulfinyloctyl isothiocyanate as an allelochemical candidate from Rorippa sylvestris Besser. Agric Biol Chem 53: 3361-3362

    CAS  Google Scholar 

  • Kawakishi S, Morimitsu Y (1994) Sulfur chemistry of onions and inhibitory factors of the arachidonic-acid cascade. ACS 546: 120-127

    CAS  Google Scholar 

  • Keer JI, McLaren RG, Swift RS (1990) The sulphur status of intensive grassland sites in southern Scotland. Grass Forage Sci 41: 183-190

    Google Scholar 

  • Khan MJ, Khan MH, Khattak RA (2006) Response of maize to different levels of sulfur. Commun Soil Sci Plant Anal 37: 41-51

    Article  CAS  Google Scholar 

  • Kim HJ, Kim SG (2002) Alterations in cellular Ca2+ and free iron pool by sulfur amino acid deprivation: the role of ferritin light chain down-regulation in prooxidant production. Biochem Pharmacol 63: 647-657

    Article  CAS  PubMed  Google Scholar 

  • Kim LS, Axelrod LJ, Howard P, Buratovich N, Waters RF (2006) Efficacy of methylsulfonylmethane (MSM) in osteoarthritis pain of the knee: a pilot clinical trial. Osteoarthr Cartil 14: 286-294

    Article  CAS  PubMed  Google Scholar 

  • Kirkegaard JA, Wong PTW, Desmarchelier JM (1996) In vitro suppression of fungal root pathogens of cereals by Brassica tissues. Plant Pathol 45: 593-603

    Article  Google Scholar 

  • Kirkegaard JA, Sarwar M (1998) Biofumigation potential of Brassicae I. Variation in glucosinolate profiles of diverse field grown Brassicas. Plant Soil 201:71-89

    Article  CAS  Google Scholar 

  • Kirkegaard JA, Sarwar M, Wong PTW, Mead A, Howe G, Newell M (2000) Field studies on the biofumigation of take-all by Brassica break crops. Austr J Agric Res 51: 445-456

    Article  Google Scholar 

  • Knauff U (2000) Unsetzung organische Schwefelverbindungen in der Rhizosphäre verschiedener landwirtschaftlicher Kulturpflanzen. PhD thesis, Bonn University, Germany

    Google Scholar 

  • Knauff U, Schulz M, Scherer HW (2003) Arylsulfatase activity in the rhizosphere and roots of different crop species. Eur J Agron 19: 215-223

    Article  CAS  Google Scholar 

  • Kolonel LN, Hankin JH, Whittemore AS, Wu AH (2000) Vegetables, fruits, legumes and prostate cancer: a multiethinic case-control study. Cancer Epidemiol Biomarkers Prev 9: 795-804

    CAS  PubMed  Google Scholar 

  • Komarnisky LA, Basu TK (2005) Biological and toxicological considerations of dietary sulfur. In: Preedy VR, Watson RR (eds), Reviews in Food and Nutrition Toxicity, 4. CRC Press, Boca Raton, FL, pp 85-104

    Google Scholar 

  • Kowalenko CG (2000) Response of forage grass to sulphur applications on coastal British Columbia soils. Can J Soil Sci 84: 227-236

    Google Scholar 

  • Krishnan HB, Bennett JO, Kim WS, Krishnan AH, Mawhinne TP (2005) Nitrogen lowers the sulfur amino acid conent of soybean (Glycine max. L. Merr.) by regulating the accumulation of Bowman-Birk protease inhibitor. J Agric Food Chem 53: 6347-6354

    Article  CAS  PubMed  Google Scholar 

  • Lange A (1998) Einfluß der Schwefel-Versorgung auf die biologische StickstoffFixierung von Leguminosen. PhD thesis, Bonn University, Germany

    Google Scholar 

  • Lazzeri L, Curto G, Leoni O, Dallavalle E (2004a) Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the root-knot nematode (Meloidogyne incognita kofoid et White. Chitw.) J Agric Food Chem 52: 6703-6707

    Article  CAS  Google Scholar 

  • Lazzeri L, Leoni O, Manici LM (2004b) Biocidal plant dried pellets for biofumigation. Ind Crop Prod 20: 59-65

    Article  CAS  Google Scholar 

  • Lee A, Watkinson JH, Orbell G, Bagyaraj J, Lauren DR (1987) Factors influencing dissolution of phosphate rock and oxidation of elemental sulphur in some New Zealand soils. New Zealand J Agric Res 30: 373-385

    CAS  Google Scholar 

  • Lee A, Watkinson H, Nguyen ML (1990) Oxidation of elemental sulphur by thiobacilli in soils from New Zealand. Middle East Sulphur Symposium, Cairo, Egypt, pp 109-124

    Google Scholar 

  • Li ST, Lin B, Zhou W (2005) Effects of previous elemental sulfur applications on oxidation of additional applied elemental sulfur in soils. Biol Fert Soils 42: 146-152

    Article  CAS  Google Scholar 

  • Liu FL, Yoo BC, Lee JY, Oan W, Harmin AC (2006) Calcium-regulated phosphorylation of soybean serine acetyltransferase in response to oxidative stress. J Biol Chem 281: 27405-27415

    Article  CAS  PubMed  Google Scholar 

  • Lopez J, Parent LE, Tremblay N, Gosselin A (2002) Sulfate accumulation and calcium balance in hydroponic tomato culture. J Plant Nutr 25: 1585-1597

    Article  CAS  Google Scholar 

  • Lukaszewski KM, Blevins DG 1996. Root growth inhibition in boron-deficient or aluminium-stressed squash may be a result of impaired ascorbate metabolism. Plant Physiol 112: 1135-1140

    CAS  PubMed  Google Scholar 

  • May MJ, Vernoux T, Leaver CJ, van Montagu M, Inze D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49: 649-667

    Article  CAS  Google Scholar 

  • Massey LK (2003) Dietary animal and plant protein and human bone health: a whole foods approach. In: New Perspectives on Dietary Protein and Bone Health. Am Soc Nutr Sci 24th Annual Meeting, September 20, 2002, pp 862-865

    Google Scholar 

  • McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26: 267-286

    Article  CAS  Google Scholar 

  • McKeown AW, Bakker CJ (2003) The response of late storage cabbage and broccoli to applications of sulphur and calcium. Can J Plant Sci 83: 947-950

    CAS  Google Scholar 

  • Miquel J, Ramirez-Bosca A, Ramirez-Bosca JV, Alperi JD (2006) A review on the role of oxygen stress and favorable effects of dietary antioxidants. Arch Gerontol Geriatr 42: 289-306

    Article  CAS  PubMed  Google Scholar 

  • Mithen RF, Lewis BG (1986) In vitro activity of glucosinolates and their products against Leptosphaeria maculans. T Brit Mycol Soc 87: 433-440

    Article  CAS  Google Scholar 

  • Mizutani J (1999) Selected allelochemicals. Crit Rev Plant Sci 18: 653-671

    Article  CAS  Google Scholar 

  • Molisch H (1937) Der Einfluss einer Pflanze auf die andere Allelopathie. Gustav Fischer Verlag, Jena, Germany

    Google Scholar 

  • Morra MJ, Kirkegaard JA (2002) Isothiocyanate release from soil-incorporated Brassica tissues. Soil Biol Biochem 34: 1683-1690

    Article  CAS  Google Scholar 

  • Mortensen J, Eriksen J, Nielsen JD (1992) Sulfur deficiency and amino acid composition in seeds and grass. Phyton 32: 85-90

    CAS  Google Scholar 

  • Motavalli P, Marler T, Cruz F, McConnell J (2006) Essential plant nutrients: extracted on October 16, http://www.cartage.org.lb/en/themes/Sciences/BotanicalSciences/ PlantHormones/EssentialPlant/EssentialPlant.htm

  • Muehlchen AM, Rand RE, Parke JL (1990) Evaluation of crucifer green-manures for controlling Aphanomyces root rot of peas. Plant Dis 74: 651-654

    Article  Google Scholar 

  • Neal RA, Halpert J (1982) Toxicology of thiono-sulfur compounds. Annu Rev Pharmacol Toxicol 22: 321-329

    Article  CAS  PubMed  Google Scholar 

  • Nicholas DJD (1965) Influence of the rhizosphere on the mineral nutrition of the plant. In: Baker KF, Snyder WC (eds), Ecology of Soil Borne Pathogens. University California Press, Berkeley, pp 210-217

    Google Scholar 

  • Norsworthy JK, Meehan JT (2005a) Herbicidal activity of eight isothiocyanated on Texas panicum (Panicum texanum), large crabgrass (Digitaria anguinalis), and sicklepod (Senna otusifolia). Weed Sci 53: 515-520

    Article  CAS  Google Scholar 

  • Norsworthy JK, Meehan JT (2005b) Use of isothiocyanates for suppression of Palmer amaranth (Amaranthus palmeri), pitted morningglory (Ipomoea lacunosa), and yellow nutsedge (Cyperus esculentus) Weed Sci 53: 884-890

    Article  CAS  Google Scholar 

  • Nuttall WF, Ukrainetz H (1991) The effect of time of S application on yield and sulfur uptake of Canola. Commun Soil Sci Plant Anal 22: 269-281

    Article  CAS  Google Scholar 

  • Olson BE, Jacobson S (1999) Plasticity of high and low nutrient-adapted grasses to added sulfur and nitrogen. J Plant Nutr 22: 641-655

    Article  CAS  Google Scholar 

  • Pattison AB, Versteeg C, Akiew S, Kirkegaard J (2006) Resistance of Brassicaceae to root-knot nematode Meloidogyne spp. in northern Australia. Int J Pest Manag 52: 63-62

    Article  Google Scholar 

  • Pedersen CA, Knudsen L, Schnug E (1998) Sulphur fertilisation. In: Schnug E (ed.), Sulphur in Agroecosystems. Part of the series “Nutrients in Ecosystems”, Vol. 2. Kluwer Academic, Dordrecht, The Netherlands, pp 115-134

    Google Scholar 

  • Petersen J, Belz R, Walker F, Hurle K (2001) Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron J 93: 37-43

    CAS  Google Scholar 

  • Picchioni GA, Graham CJ, Ulery AL (2004) Gypsum effects on growth and macroelement uptake of field-grown Asimina triloba (pawpaw) irrigated with low-saline, sodic water. Hortic Sci 39: 1104-1109

    CAS  Google Scholar 

  • Pinto S, Rosa E, Santos S (1998) Effect of 2-propenyl glucosinolate and derived isothiocyanate on the activity of the nematode Globodera rostochiensis Woll. Acta Hortic 459: 323-327

    CAS  Google Scholar 

  • Pressman AH (1997) The GSH Phenomenon: Nature’s Most Powerful Antioxidant and Healing Agent: Glutathione. Marten Press, New York

    Google Scholar 

  • Price AJ, Charron CS, Saxton AM, Sama CE (2005) Allyl isothiocyanate and carbon dioxide produced during degradation of Brassica juncea tissue in different soil conditions. Hortic Sci 40: 1734-1739

    CAS  Google Scholar 

  • Pucek TR, Pys JB (1999) The nutritive value and yield of alfalfa cultivated on sulphur postmining lands. J Agron Crop Sci 182: 185-191

    Article  CAS  Google Scholar 

  • Randall PJ, Thomson JA, Schroeder HE (1979) Cotyledonary proteins in Pisum sativum: IV effects of sulfur, phosphorus, potassium and magnesium deficiencies. Aust J Plant Physiol 6: 11-24

    Article  CAS  Google Scholar 

  • Randall PJ, Wrigley CW (1986) Effects of sulfur supply on the yield, composition, and quality of grain from cereals, oilseeds, and legumes. Adv Cereal Sci Technol 8: 171-206

    CAS  Google Scholar 

  • Rhoads FM, Olson SM (2001) Cabbage response to sulfur and nitrogen rate. Soil Crop Sci Soc Florida Proc 60: 37-40

    Google Scholar 

  • Richie JP (1992) The role of glutathione in aging and cancer. Exp Gerontology 27: 615-626

    Article  CAS  Google Scholar 

  • Roembke J, Beck L, Foerster B, Fruend HC, Horak F, Ruf A, Rosciczweski C, Scheurig M, Woas S (2002) Boden als Lebensraum fuer Mikroorganismen. Eine Literaturstudie. http://www.uvm.baden-wuerttemberg.de/bofaweb/berichte/tbb04/tbb04.htm

  • Rosa EAS, Rodrigues PMF (1999) Towards a more sustainable agriculture system: the effect of glucosinolates on the control of soil-borne diseases. J Hortic Sci Biotechnol 74: 667-674

    CAS  Google Scholar 

  • Ruiz JM, Rivero RM, Romero L (2005) Regulation of nitrogen assimilation by sulfur in bean. J Plant Nutr 28: 1163-1174

    Article  CAS  Google Scholar 

  • Saggar S, Bettany JR, Stewart JWB (1981) Measurement of microbial sulphur in soil. Soil Biol Biochem 13: 493-498

    Article  CAS  Google Scholar 

  • Saha JK, Singh AB, Ganeshamurthy AN, Kundu S, Biswas AK (2001) Sulfur accumulation in Vertisols due to continuous gypsum application for six years and its effect on yield and biochemical constituents of soybean (Glycine max. L. Merrill). J Plant Nutr Soil Sci 164: 317-320

    Article  CAS  Google Scholar 

  • Sanderson KR (2003) Broccoli and cauliflower response to supplemental soil sulphur and calcium. Acta Hortic 627: 171-179

    CAS  Google Scholar 

  • Sarwar M, Kirkegaard JA (1998) Biofumigation potential of Brassicas. II. Effect of environment and ontogeny on glucosinolate production and implications for screening. Plant Soil 201: 91-101

    Article  CAS  Google Scholar 

  • Sarwar M, Kirkegaard JA, Wong PTW, Desmarchelier JM (1998) Biofumigation potential of Brassicas. III In vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant and Soil 201: 103-112

    Article  CAS  Google Scholar 

  • Scherer HW, Lange A (1996) N2 fixation and growth of legumes as affected by sulphur fertilization. Biol Fertil Soils 23: 449-453

    Article  CAS  Google Scholar 

  • Schnug E (1988) Quantitative und qualitative Aspekte der Diagnose und Therapie der Schwefelversorgung von Raps (Brassica napus L.) unter besonderer Berücksichtigung glucosinolatarmer Sorten. Habilitationsschrift (DSc thesis), Kiel University, Germany

    Google Scholar 

  • Schnug E (1990). Glucosinolates - fundamental, environmental and agricultural aspects. In: Rennenberg H, Brunold C, De Kok LJ, Stulen I (eds), Sulfur Nutrition and Sulfur Assimilation in Higher Plants. SPB Academic, The Hague, pp 97-106

    Google Scholar 

  • Schnug E (1997) Significance of sulphur for the quality of domesticated plants. In: Cram WJ, De Kok LJ, Brunold C, Rennenberg H (eds), Sulphur Metabolism in Higher Plants: Molecular, Ecophysiological and Nutritional Aspects. Backhuys Leiden, The Netherlands, pp 109-130

    Google Scholar 

  • Schnug E, Haneklaus S (1990) Quantitative glucosinolate analysis in Brassica seeds by X-ray fluorescence spectroscopy. Phytochem Anal 1: 40-43

    CAS  Google Scholar 

  • Schnug E, Haneklaus S (1994) Sulphur deficiency in Brassica napus - biochemistry, symptomatology, morphogenesis. FAL Agric Res 144 (special issue)

    Google Scholar 

  • Schnug E, Haneklaus S (1998) Diagnosis of sulphur nutrition. In: Schnug E (ed.), Sulphur in Agroecosystems. Part of the series “Nutrients in Ecosystems”, Vol. 2. Kluwer Academic, Dordrecht, The Netherlands, pp 1-38

    Google Scholar 

  • Schroeder HE (1984) Major albumins of Pisum cotyledons. J Sci Food Agric 35: 191-198

    Article  CAS  PubMed  Google Scholar 

  • Scott NM, Anderson G (1976) Sulphur, carbon and nitrogen contents of organic fractions from acetylacetone extracts of soils. J Soil Sci 27: 324-330

    Article  CAS  Google Scholar 

  • Serra B, Rosa E, Iori R, Barillari J, Cardoso A, Abreu C, Rollin P (2002) In vitro activity of 2-phenylethyl glucosinolate, and its hydrolysis derivates on the root-knot nematode Globodera rostochiensis Woll. Sci Hortic 92: 75-81

    Article  CAS  Google Scholar 

  • Sexton P, Pack NC, Naeve SL, Shibles RM (2002) Sulfur metabolism and protein quality of soybean. J Crop Prod 5: 285-308

    Article  CAS  Google Scholar 

  • Shankaranarayana ML, Raghavan B, Abraham KO, Natarajan CP (1973) Volatile sulphur compounds in food flavours. CRC Critical Rev Food Tech 4: 395-435

    Article  Google Scholar 

  • Shukla RK, Kumar A, Mahapatra BS, Kandpal B (2005) Response of sulphur and nitrogen fertilization on yield, quality and other metric traits of Brassica napus. Brassica 7: 47-51

    CAS  Google Scholar 

  • Singh O, Raj B (1988) Sulphur fertilisation in relation to yield and trend of production of leghaemoglobin pigment in the nodules of pea Pisum sativum var. Arvense Ann Agric Res 9: 13-19

    Google Scholar 

  • Singh SP, Sharma SK, Singh V, Sharma A, Sharma A (2001) Effect of P and S application on yield and nutrient uptake in potato. Indian J Hort 58: 378-382

    Google Scholar 

  • Smith BJ, Kirkegaard JA (2002) In vitro inhibition of soil microorganisms by 2-phenylethyl istothiocyanate. Plant Pathol 51: 585-593

    Article  CAS  Google Scholar 

  • Smith BJ, Kirkegaard JA, Howe GN (2004) Impacts of Brassica break-crops on soil biology and yield of following wheat crops. Austr J Agric Res 55: 1-11

    Article  Google Scholar 

  • Smolinska U, Knudsen GR, Morra MJ, Borek V (1997) Inhibition of Aphanomces euteiches f. sp. pisi by volatiles produced by hydrolysis of Brassica napus seed meal. Plant Dis 81: 288-292

    Article  CAS  Google Scholar 

  • Smolinska U, Horbowicz M (1999) Fungicidal activity of volatiles from selected cruciferous plants against resting propagules of soil-borne fungal pathogens. J Phytopathol 147: 119-124

    CAS  Google Scholar 

  • Smolinska U, Morra MJ, Knudsen GR, James RL (2003) Isothiocyanates produced by Brassicae species as inhibitors of Fusarium oxysporum. Plant Dis 87: 407-412

    Article  CAS  Google Scholar 

  • Srivastava HS (1980) Regulation of nitrate reductase activity in higher plants. Phytochemistry 725-733

    Google Scholar 

  • Stevenson FJ (1986) Cycle of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients Wiley, New York, 285-320

    Google Scholar 

  • Stoewsand GS (1995) Bioactive organosulfur phytochemicals in Brassica oleracea vegetables - a review. Food Chem Toxicot 33: 537-543

    Article  CAS  Google Scholar 

  • Sunarpi, Anderson JW (1997) Allocation of S in generative growth of soybean. Plant Physiol 114: 687-693

    CAS  PubMed  Google Scholar 

  • Tabatabai MA (1982) Sulfur. In: Page AL et al. (eds), Methods of Soil Analysis, Part 2. SSSA, Madison, pp 501-538

    Google Scholar 

  • Tabatabai MA (1986) Sulfur in Agriculture. Press: American Society of Agronomy, Madison, Wisconsin

    Google Scholar 

  • Tabatabai MA, Chae YM (1991) Mineralisation of sulfur in soils amended with organic wastes. J Environ Qual 20: 380-386

    Google Scholar 

  • Thomke S, Petterson H, Neil M, Hakansson J (1998) Skeletal muscle goitrin concentration and organ weights in growing pigs fed diets containing rapeseed meal. Animol Feed Sci Techn 73: 207-215

    Article  CAS  Google Scholar 

  • Topp W (1981) Biologie der Bodenorganismen. UTB, Heidelberg, Germany

    Google Scholar 

  • Tressel R, Holzer M, Apetz M (1977) Formation of flavor compounds in asparagus. 1. Biosynthesis of sulfur-containing acids in asparagus. Agric Food Chem 25: 455-459

    Article  Google Scholar 

  • Vančura H, Hansliková A (1972) Root exudates of plants. IV. Differences in chemical composition of seed and seedlings exudates. Plant Soil 36: 271-282

    Article  Google Scholar 

  • Vaughan LV, MacAdam JW, Smith SE, Dudley LM (2002) Root growth and yield of differing alfalfa rooting populations under increasing salinity and zero leaching. Crop Sci 42: 2064-2071

    Article  Google Scholar 

  • Vong PC, Laserre-Joulin F, Guckert A (2002) Mobilization of labelled organic sulfur in rhizosphere of rape and barley and in non-rhizosphere soil. J Plant Nutr 25: 2191-2204

    Article  CAS  Google Scholar 

  • Vong PC, Dedourge O, Laserre-Joulin F, Guckert A (2003) Immobilized-S, microbial biomass-S and soil arylsulfatase activity in the rhizosphere soil of rape and barley as affected by labile substrate C and N additions. Soil Biol Biochem 35: 1651-1661

    Article  CAS  Google Scholar 

  • Warton B, Matthiessen JN, Shackleton MA (2001) Glucosinolate content and isothiocyanate evolution - two measures of the biofumigation potential of plants. J Agric Food Chem 49: 5244-5250

    Article  CAS  PubMed  Google Scholar 

  • Watkinson JH, Bolan NS (1998) Modeling the rate of elemental sulfur oxidation in soils. In: Maynard DG (ed.), Sulfur in the Environment. Marcel Dekker, New York, pp 135-170

    Google Scholar 

  • Wu J, O’Donnell AG, He ZL, Syers JK (1994) Fumigation-extraction method for the measurement of soil microbial biomass-S. Soil Biol Biochem 26: 117-125

    Article  CAS  Google Scholar 

  • Xu HL, Lopez J, Rachidi F, Tremblay N, Gauthier L, Desjardins Y, Gosselin A (1996) Effect of sulphate on photosynthesis in greenhouse-grown tomato plants. Physiol Plant 96: 722-726

    Article  CAS  Google Scholar 

  • Yamane A (1991) Chemical studies on the alleopathy of Rorippa plants (Cruciferae). PhD thesis, Hokkaido University, Japan

    Google Scholar 

  • Yamane A, Nishimura H, Mizutani J (1992) Allelopathy of yellow fieldcress Rorippa sylvestris: identification and characterization of phytotoxic constituents. J Chem Ecol 18: 683-691

    Article  CAS  Google Scholar 

  • Yan LB (1993) Input and transformation of C and N in rhizosphere. Soils (in Chinese) 5: 242-245

    Google Scholar 

  • Yang Z, Haneklaus S, Sing BR, Schnug E (2006) Effect of repeated applications of elemental sulphur on microbial population, sulphate concentration and pH in soils. Commun Soil Sci Plant Anal (in press).

    Google Scholar 

  • Zucker A (1987) Dynamik verschiedener Schwefel-Fraktionen bei Abbauversuchen mit Brennesselblaettern Urtica dioica L. Z Pflanzenernaehr Bodenk 150: 168-173

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Haneklaus, S., Bloem, E., Schnug, E. (2007). Sulfur interactions in crop ecosystems. In: Hawkesford, M.J., De Kok, L.J. (eds) Sulfur in Plants An Ecological Perspective. Plant Ecophysiology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5887-5_2

Download citation

Publish with us

Policies and ethics