Nitrogen Budget of a Spruce Forest Ecosystem After Six-year Addition of Ammonium Sulphate in Southwest Sweden

  • Johan Bergholm
  • Hooshang Majdi
  • Tryggve Persson

A nitrogen (N) budget was constructed for a period of 6 years (1988–1993) in a Norway spruce stand with current deposition of 19 kg N and 22 kg S ha−1 year−1. The stand was fertilized annually by addition of 100 kg N and 114 kg S ha−1 (NS). Above and below ground biomass, litterfall, fine- root litter production, soil solution and net mineralization were measured to estimate pools, fluxes and accumulation of nitrogen. The average needle litterfall in control (C) and NS plots in 1993 was 2.2 and 2.5 ton ha−1 year−1, respectively. The fine root litter production prior to treatment (1987) was 4.4 ton ha−1 year−1 and after treatment (1993) it was 4.5 and 3.9 ton ha−1 year−1 in C and NS plots, respectively. Net N mineralization in the soil profile down to 50 cm was estimated to be 86 and 115 kg ha−1 year−1 in C and NS plots, respectively in 1992. During the treatment period the uptake of N in the needle biomass in C and NS plots was 29 and 77 kg ha−1 year−1, respectively. No N was accumulated in needles of C plot where the NS plots accumulated 34 kg ha−1 year−1. Of the annually added inorganic N to NS plots 47% was accumulated in the above and below ground biomass and 37% in the soil. N fluxes via fine-root litter production in the C plots were much higher (54 kg ha−1 year−1) than that via litterfall (29 kg ha−1 year−1).


above-ground biomass ammonium sulphate budget fine roots N flux N mineralization pools spruce 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aber, J., Nadekhoffer, K. J., Steudler, P., & Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. Bioscience, 39(6), 378–386.CrossRefGoogle Scholar
  2. Ågren, G. I., Bosatta , E., & Magill , A. M. (2001). Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Ecologia, 128,4–98.Google Scholar
  3. Bergholm, J., Berggren, D., & Alavi, G. (2003). Soil acidification induced by ammonium sulphate addition in a Norway spruce forest in Southwest Sweden. Water, Air, and Soil Pollution, 148, 87–109.CrossRefGoogle Scholar
  4. Bergholm, J., Jansson, P-E., Johansson, U., Majdi, H., Nilsson, L.-O., Persson, H., et al. (1995). Air pollution, tree vitality and forest production - The Skogaby project - General description of a field experiment with Norway spruce in South Sweden. In L.-O. Nilsson, R. F. Hüttl, U. T. Johansson & P. Mathy (Eds.), Proceedings of a symposium on nitrogen uptake and cycling in forest ecosystem, Halmstad, Sweden 7–10 June 1993. Ecosystem Research Report, 21, 69–87.Google Scholar
  5. Falkengren-Grerup, U. (1987). Long-term changes in pH of forest soils in southern Sweden. Environmental Pollution, 43,79–90.CrossRefGoogle Scholar
  6. FAO-Unesco (1990). Soil Map of the World.Google Scholar
  7. Finér, L., Mannerkoski, H., Piirainen, S., & Starr, M. (2003). Carbon and nitrogen pools in an old-growth, Norway spruce mixed forest in eastern Finland and changes associated with clear-cutting. Forest Ecology and Management, 174(1/3), 51–63.CrossRefGoogle Scholar
  8. Gundersen, P., Schmidt, I. K., & Raulund-Rasmussen, K. (2006). Leaching of nitrate from temperate forests - effects of air pollution and forest management. Environmental Review, 14, 1–57.CrossRefGoogle Scholar
  9. Hallbäcken, L., & Tamm, C. O. (1986). Changes in soil acidity from 1927 to 1982–1984 in a forest area of South-west Sweden. Scandinavian Journal of Forest Research, 1, 219–232.Google Scholar
  10. Hedin, L. O., Granat, L., Likens, G., Buishand, T. A., Galloway, J. N., Butler, T. J., et al. (1994). Steep decline in atmospheric base cations in regions of European and North America. Nature, 367, 351–354.CrossRefGoogle Scholar
  11. Jansson, P-E. (1998). Simulation Model for Soil Water and Heat Conditions. Description of the SOIL Model’ Swedish University of Agricultural Sciences, Dept. of Soil Science, Division of Agricultural Hydrotechnics, Uppsala, p 81.Google Scholar
  12. Magill, A. H., Aber, J. D., Berntson, G. M., McDowell, W. H., Nadelhoffer, K. J., Melillo, J. M., et al. (2000). Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems.Google Scholar
  13. Magill, A. H., Aber, J. D., Currie, W. S., Nadelhoffer, K. J., Martin, M. E., McDowell, H., et al. (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harward Forest LTER, Massachusetts, USA. Forest Ecology and Management, 196, 7–28.CrossRefGoogle Scholar
  14. Magill, A. H., Aber, J. D., Hendricks, J. J., Bowden, R. D., Melillo, J. M., & Steudler, P. A. (1997). Biochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecological Applications, 7(2), 402–415.CrossRefGoogle Scholar
  15. Magill, A. H., Downs, M. R., Nadelhoffer, K. J., Hallett, R. A., & Aber, J. D. (1996). Forest ecosystem response to four years of chronic nitrate and sulphate additions at Bear Brooks Watershed, Maine, USA. Forest Ecology and Management, 84, 29–37.CrossRefGoogle Scholar
  16. Majdi, H. (1996). Root sampling methods - applications and limitations of minirhizotron technique. Plant and Soil, 185 (2),225–258.Google Scholar
  17. Majdi, H., Damm, E., & Nylund, J. E. (2001). Longevity of mycorrhizal roots in relation to branching order and nutrient availability. New Phytologist, 150, 195–202.CrossRefGoogle Scholar
  18. Majdi, H, & Kangas, P. (1997). Demography of fine roots in response to nutrient applications in a Norway spruce stand in southwestern Sweden. Ecoscience, 4, 199–205.Google Scholar
  19. Majdi, H., & Persson, H. (1995). Effects of ammonium sulphate application on the chemistry of bulk soil, rhizosphere, fine roots and fine-root distribution in a Picea abies (L.) Karst. Stand. Plant and Soil, 168–169, 159–160.Google Scholar
  20. Marklund, L. G. (1987). Biomass functions for Norway spruce (Picea abies (L.) Karst.)’ (in Sweden). Department of Forest Survey, Report 43, Swedish University of Agricultural Sciences.Google Scholar
  21. Marklund, L. G. (1988). Biomass functions for pine, spruce and birch in Sweden. Department of Forest Survey, Report 45, Swedish University of Agricultural Sciences (in Swedish with English summery).Google Scholar
  22. Nadelhoffer, J. K., Colman, B. P., Currie, W. S., Magill, A., & Aber, J. D. (2004). Decadal-scale fates of 15N tracers added to oak and pine stands under ambient and elevated N inputs at the Harward Forest (USA). Forest Ecology and Management, 196, 89–107.CrossRefGoogle Scholar
  23. Nadelhoffer, J. K., Downs, M. R., & Fry, B. (1999). Sinks for 15N.enriched additions to an oak forest and a red pine plantation. Ecological Applications, 9, 72–86.CrossRefGoogle Scholar
  24. Nadelhoffer, J. K., Downs, M. R., Fry, B., Aber, J. D., Magill, A. H., & Melillo, J. M. (1995). The fate of 15N-labelled nitrate additions to a northern hardwood forest in eastern Maine, USA. Oecologia, 103, 292–301.CrossRefGoogle Scholar
  25. Nihlgård, B. (1985). The ammonium hypothesis - An additional explanation to the forest dieback in Europe. Ambio, 14, 2–8.Google Scholar
  26. Nilsson, L.-O., & Wiklund, K. (1992). Influence of nitrogen and water stress on Norway spruce production in south Sweden - The role of air pollution. Plant and Soil, 147, 251–265.CrossRefGoogle Scholar
  27. Nilsson, L.-O., & Wiklund, K. (1994). Nitrogen uptake in a Norway spruce stand following ammonium sulphate application, fertigation, irrigation, drought and nitrogen-free fertilisation. Plant and Soil, 164, 221–229.CrossRefGoogle Scholar
  28. Persson, T., & Nilsson, L.-O. (2000). Skogabyförsöketeffekter av långvarig kväveoch svaveltillförsel till ett skogsekosystem. Naturvårdsverket, Rapport 5173 (In Swedish).Google Scholar
  29. Persson, T., Rudebeck, A., Jussy, J. H., Colin-Belgrand, M., Priemé, A., Dambrine, E., et al. (2000). Soil nitrogen turnover - Mineralisation, nitrification and denitrification in european forest soils. In E.-D. Schulze (Ed.), Carbon and nitrogen cycling in European forest ecosystems. Ecological Studies, 142.Google Scholar
  30. Persson, T., Rudebeck, A., Karlsson, P., & Sjöberg, M. (2001). Kvävemineralisering och nitrifikation i Skogaby’ Persson, T. and Nilsson, L.-O. (eds) in Skogabyförsöket - Effekter av långvarig kväveoch svaveltillförsel till ett skogsekosystem. Naturvårdsverket Rapport 5173 (summary in english).Google Scholar
  31. Persson, T., & Wirén, A. (1995). Nitrogen mineralization and potential nitrification at different depths in acid forest soils. Plant and Soil, 168–169, 55–66.CrossRefGoogle Scholar
  32. SAS Institute Inc. (2002). User's guide’: Statistics, version 8.02 edition. Cary, NC: SAS Institute Inc.Google Scholar
  33. Tamm, C. O. (1991). Nitrogen in terrestrial ecosystems: Questions of productivity, vegetational change, and ecosystem stability. Ecological Studies, 81, 115.Google Scholar
  34. Tietema, A., Riemer, J. M., Verstraten, M. P. van der Maas, M. P., van Wijk, A. J., & van Voorthuyzen, I. (1993). Nitrorgen cycling in acid soils subject to increased atmospheric nitrogen input. Forest Ecology and Management, 57, 29–44.CrossRefGoogle Scholar
  35. Viro, P. J. (1952). On the determination of stoniness. Communicationes Instituti Forestalis Fenniae, 40 (3), 1–23 (in Finnish with English summary).Google Scholar
  36. Wright, R. E., & Rasmussen, L. (1998). Introduction to the NITREX and EXMAN projects. Forest Ecology and Management, 101, 1–7.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2007

Authors and Affiliations

  • Johan Bergholm
    • 1
  • Hooshang Majdi
    • 1
  • Tryggve Persson
    • 1
  1. 1.Department of Ecology and Environmental ResearchSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations