Skip to main content

COMPUTATIONAL AND NUMERICAL BACKGROUND OF THE UNIFIED DANISH EULERIAN MODEL

  • Conference paper
Air, Water and Soil Quality Modelling for Risk and Impact Assessment

Part of the book series: NATO Security Through Science Series ((NASTC))

Abstract

The necessity to handle efficiently large-scale air pollution models in order to be able to resolves a series of comprehensive environmental tasks is discussed. It is emphasized that the choice of fast and, at the same time, sufficiently accurate numerical methods is very important, but not sufficient. It is also necessary to exploit efficiently the cache memory of the computer under consideration and/or to be able to carry out parallel computations. The particular model used is the Unified Danish Eulerian Model (UNI-DEM), but most of the results can also be applied when other large-scale models are used. The use of UNI-DEM in several comprehensive air pollution studies is discussed in the end of this paper. The investigation of the impact of future climate changes on air pollution levels in some European countries is among the most important studis inwhich UNI-DEM has until now been used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackermann, I., Hass, H., Schell, B., and Binkowski, F. S., 1999, Regional modelling of particulate matter with MADE, Environmental Management and Health 10: 201–208.

    Article  Google Scholar 

  • Alexandrov, V. N., Owczarz, W., Thomsen, P. G. and Zlatev, Z., 2004, Parallel runs of a large air pollution model on a grid of Sun computers, Mathematics and Computers in Simulations 65: 557–577.

    Article  Google Scholar 

  • Alexandrov, V. N. Sameh, A., Siddique, Y., and Zlatev, Z., 1997, Numerical integration of chemical ODE problems arising in air pollution models, Environmental Modelling and Assessment 2: 365–377.

    Article  Google Scholar 

  • Ambelas Skjøth, C., Bastrup-Birk, A., Brandt, J., and Zlatev, Z., 2000, Studying variations of pollution levels in a given region of Europe during a long time-period, Systems Analysis Modelling Simulation 37: 297–311.

    Google Scholar 

  • Bastrup-Birk, A., Brandt, J., Uria, I., and Zlatev, Z., 1997, Studying cumulative ozone exposures in Europe during a seven-year period, Journal of Geophysical Research 102: 23917–23935.

    Article  CAS  Google Scholar 

  • Bott, A., 1989, A positive definite advection scheme obtained by non-linear renormalization of the advective fluxes, Monthly Weather Review 117: 1006–1015.

    Article  Google Scholar 

  • Brenan, K., Campbell, S., and Petzold, L., 1996, Numerical solution of initial value problems in differential-algebraic equations, SIAM, Philadelphia.

    Google Scholar 

  • Crowley, W. P., 1968, Numerical advection experiments, Monthly Weather Review 96: 1–11.

    Article  Google Scholar 

  • Deuflhard, P., 1985, Recent progress in extrapolation methods for ordinary differential equations, SIAM Review 27: 505–535.

    Article  Google Scholar 

  • Dimov, I., Faragó, I., Havasi, Á., and Zlatev, Z., 2001, L-Commutativity of the operators in splitting methods for air pollution models, Annales Univ. Sci. Budapest 44: 129–150.

    Google Scholar 

  • Dimov, I., Faragó, I., Havasi, Á. and Zlatev, Z., 2004, Operator splitting and commutativity analysis in the Danish Eulerian Model, Mathematics and Computers in Simulation 67: 217–233.

    Article  Google Scholar 

  • Dimov, I., Geernaert, G., and Zlatev, Z., 2002, Influence of future climate changes in Europe on exceeded ozone critical levels. In: Nordic Meteorological Meeting 23, 2002, H. E. Jørgensen, ed., http://www.dams.dk/nmm2002/proceedings.htm.

    Google Scholar 

  • Djouad, R., and Sportisse, B., 2003, Solving reduced chemical models in air pollution modelling, Applied Numerical Mathematics 40: 49–61.

    Article  Google Scholar 

  • Elbern, H., Schmidt, H., and Ebel, A., 1997, Variational data assimilation for tropospheric chemistry modelling, Journal of Geophysical Research 104: 15967–15985.

    Article  Google Scholar 

  • Fornberg, B., 1975, On a Fourier Method for the integration of hyperbolic equations, SIAM J. Numer. Anal., 12, 509–528.

    Article  Google Scholar 

  • Fornberg, B., 1996, A practical guide to pseudospectral methods, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Geernaert, G., and Zlatev, Z., 2004, Studying the influence of the biogenic emissions on the AOT40 levels in Europe, International Journal of Environment and Pollution 22: 29–42.

    CAS  Google Scholar 

  • Georgiev, K., and Zlatev, Z., 1999, Parallel Sparse Matrix Algorithms for Air Pollution Models, Parallel and Distributed Computing Practices 2: 429–442.

    Google Scholar 

  • Gropp, W., Lusk, E., and Skjellum, A., 1994, Using MPI: Portable Programming with the Message Passing Interface, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Havasi, Á., and Zlatev, Z., 2002, Trends of Hungarian air pollution levels on a long time-scale, Atmospheric Environment 36: 4145–4156.

    Article  CAS  Google Scholar 

  • Hesstvedt, E., Hov, Ø., and Isaksen, I. A., 1978, Quasi-steady-state approximations in air pollution modelling: comparison of two numerical schemes for oxidant prediction, International Journal of Chemical Kinetics 10: 971–994.

    Article  CAS  Google Scholar 

  • Houghton, J. T., Ding, Y., Griggs, D. J, Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A., eds., 2001, Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town.

    Google Scholar 

  • Hov, Ø., Zlatev, Z., Berkowicz, R., Eliassen, A., and Prahm, L. P., 1988, Comparison of numerical techniques for use in air pollution models with non-linear chemical reactions, Atmospheric Environment, 23: 967–983.

    Google Scholar 

  • Hundsdorfer, W., Koren, B., van Loon, M., and Verwer, J. G., 1995, A positive finite difference advection scheme, J. Comput. Phys. 117: 35–46.

    Article  Google Scholar 

  • Hundsdorfer, W., and Verwer, J. G., 2003, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer, Berlin.

    Google Scholar 

  • Kreiss, H. O. and J. Oliger, J., 1972, Comparison of accurate methods for the integration of hyperbolic equations, Tellus 24: 199–215.

    Google Scholar 

  • Lambert, J. D., 1991, Numerical Methods for Ordinary Differential Equations, Wiley, New York.

    Google Scholar 

  • Lanser, D., and Verwer, J. G., 1999, Analysis of operators splitting for advection-diffusion-reaction problems in air pollution modelling, J. Comput. Appl. Math. 111: 201–216.

    Article  Google Scholar 

  • Molenkampf, C. R., 1968, Accuracy of finite-difference methods applied to the advection equation, Journal of Applied Meteorology 7: 160–167.

    Article  Google Scholar 

  • Owczarz, W., and Zlatev, Z., 2001, Running a large air pollution model on an IBM SMP computer, International Journal of Computer Research 10: 321–330.

    Google Scholar 

  • Owczarz, W., and Zlatev, Z., 2002, Parallel matrix computations in air pollution modelling, Parallel Computing 28: 355–368.

    Article  Google Scholar 

  • Pepper, D. W., and Baker, A. J., 1979, A simple one-dimensional finite element algorithm with multidimensional capabilities, Numerical Heath Transfer 3: 81–95.

    Google Scholar 

  • Pepper, D. W., Kern, C. D., and Long, P. E. Jr., 1979, Modelling the dispersion of atmospheric pollution using cubic splines and chapeau functions, Atmospheric Environment 13: 223–237.

    Article  Google Scholar 

  • Schell, B., Ackermann, I. J., Hass, H., Binkowski, F. S., and Ebel, A., 2001, Modelling the formation of secondary organic aerosol within a comprehensive air quality model system, Journal of Geophysical Research 106: 28275–28293.

    Article  CAS  Google Scholar 

  • Shampine, L. F., Reichelt, M. W., and Kierzenka, J. A., 1999, Solving Index-1 DAEs in MATLAB and Simulink, SIAM Rev. 41: 538–552.

    Article  Google Scholar 

  • Verwer, J. G., and van Loon, M., 1996, An evaluation of explicit pseudo-steady state approximation for stiff ODE systems from chemical kinetics, J. Comp. Phys. 113: 347–352.

    Google Scholar 

  • Verwer, J. G., and Simpson, D., 1995, Explicit methods for stiff ODE’s from atmospheric chemistry, Appl. Numer. Math. 18: 413–430.

    Article  Google Scholar 

  • WEB-site for OPEN MP tools, 1999, http://www.openmp.org.

    Google Scholar 

  • WEB-Site of DCSC, 2004, Danish Centre for Scientific Computing, Sun High Performance Computing Systems, http://www.hpc.dtu.dk.

    Google Scholar 

  • Zlatev, Z., 1980, On some pivotal strategies in Gaussian elimination by sparse technique, SIAM J. Numer. Anal. 17: 18–30.

    Article  Google Scholar 

  • Zlatev, Z., 1982, Use of iterative refinement in the solution of sparse linear systems, SIAM J. Numer. Anal. 19: 381–399.

    Article  Google Scholar 

  • Zlatev, Z., 1984, Application of predictor-corrector schemes with several correctors in solving air pollution problems, BIT 24: 700–715.

    Article  Google Scholar 

  • Zlatev, Z., 1987, Survey of the advances in exploiting the sparsity in the solution of large problems, J. Comput. Appl. Math. 20: 83–105.

    Article  Google Scholar 

  • Zlatev, Z., 1991, Computational Methods for General Sparse Matrices, Kluwer Academic Publishers, Dordrecht-Boston-London.

    Google Scholar 

  • Zlatev, Z., 1995, Computational Treatment of Large Air Pollution Models, Kluwer Academic Publishers, Dordrecht-Boston-London.

    Google Scholar 

  • Zlatev, Z., 2001, Partitioning ODE systems with an application to air pollution models, Computers and Mathematics with Applications 42: 817–832.

    Article  Google Scholar 

  • Zlatev, Z., 2002, Massive data set issues in air pollution modelling, In: Handbook on Massive Data Sets, J. Abello, P. M. Pardalos and M. G. C. Resende, eds., Kluwer Academic Publishers, Dordrecht-Boston-London, pp. 1169–1220.

    Google Scholar 

  • Zlatev, Z., Dimov, I. Ostromsky, Tz. Geernaert, G., Tzvetanov, I. and Bastrup-Birk, A., 2001, Calculating loses of crops in Denmark caused by high ozone levels, Environmental Modeling and Assessment 6: 35–55.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

ZLATEV, Z. (2007). COMPUTATIONAL AND NUMERICAL BACKGROUND OF THE UNIFIED DANISH EULERIAN MODEL. In: Ebel, A., Davitashvili, T. (eds) Air, Water and Soil Quality Modelling for Risk and Impact Assessment. NATO Security Through Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5877-6_27

Download citation

Publish with us

Policies and ethics