Segmental and chain dynamics in polymers

  • C. Mike Roland
  • Ricardo Casalini
Conference paper
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 242)


All polymers exhibit a breakdown of time-temperature super positioning in the softening zone, where both local and global chain modes contribute to the measured dynamic response. This differing behavior of the two modes is also seen in the volume and pressure dependences of the respective relaxation times. Nevertheless, the superposition of local segmental and global chain modes can be achieved by expressing the relaxation times as a function of the product of temperature, T, times specific volume, V, with the latter raised to a constant γ. Moreover, the value of γ is the same for the two modes. These experimental facts reveal that the relative contribution of temperature and volume is the same for the two modes, although their response to either variable differs; that is, while having the same functional form, the combined effect of T and V on the respective modes is different.


Segmental relaxation structural relaxation chain modes global motion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Plazek, D.J. (1965) Temperature Dependence of the Viscoelastic Behavior of Polystyrene, J. Phys. Chem. 69, 3480-3487.CrossRefGoogle Scholar
  2. 2.
    Ngai, K.L. and Plazek, D.J. (2005) Identification of Different Modes of Molecular Motion in Polymers that Cause Thermorheological Complexity, Rubber Chem. Tech. 68, 376-434.Google Scholar
  3. 3.
    Santangelo, P.G. and Roland, C.M. (1998) Temperature Dependence of Mechanical and Dielectric Relaxation in cis-1,4-Polyisoprene, Macromolecules 31, 3715-3719.CrossRefADSGoogle Scholar
  4. 4.
    Roland, C.M., Ngai, K.L., Santangelo, P.G., Qiu, X.H., Ediger, M.D., and Plazek, D.J. (2001) Temperature Dependence of Segmental and Terminal Relaxation in Atactic Polypropylene Melts, Macromolecules, 34, 6159-6160.CrossRefADSGoogle Scholar
  5. 5.
    Plazek, D.J., Chay, I.-C., Ngai, K.L., and Roland, C.M. (1995) Viscoelastic Properties of Polymers. 4. Thermorheological Complexity of the Softening Dispersion in Polyisobutylene, Macromolecules 28, 6432-6436.ADSGoogle Scholar
  6. 6.
    Ferry, J.D. (1980) Viscoelastic Properties of Polymers, 3rd edition, Wiley, New York, p. 606.Google Scholar
  7. 7.
    Floudas, G. and Reisinger, T. (1999) Pressure Dependence of the Local and Global Dynamics of Polyisoprene, J. Chem. Phys. 111, 5201-5204.CrossRefADSGoogle Scholar
  8. 8.
    Floudas, G., Gravalides, C., Reisinger, T., and Wegner, G. (1999) Effect of Pressure on the Segmental and Chain Dynamics of Polyisoprene. Molecular Weight Dependence, J. Chem. Phys. 111, 9847-9852.ADSGoogle Scholar
  9. 9.
    Casalini, R. and Roland, C.M. (2005) Temperature and Density Effects on the Local Segmental and Global Chain Dynamics of Poly(oxybutylene), Macromolecules 38, 1779-1788.CrossRefADSGoogle Scholar
  10. 10.
    Yamakawa, H. (1971) Modern Theory of Polymer Solutions, Harper and Row, New York, chapter 6.Google Scholar
  11. 11.
    Doi, M. and Edwards, S.F. (1986) The Theory of Polymer Dynamics, Clarendon Press, Oxford, p. 226.Google Scholar
  12. 12.
    Casalini, R. and Roland, C.M. (2004) Thermodynamical Scaling of the Glass Transition Dynamics, Phys. Rev. E 69, 062501.CrossRefADSGoogle Scholar
  13. 13.
    Roland, C.M. and Casalini, R. (2004) Comment on Ddisentangling Density and Temperature Effects in the Viscous Slowing Down of Glass-forming Liquids, J. Chem. Phys. 121, 11503-11504.CrossRefADSGoogle Scholar
  14. 14.
    Roland, C.M., Hensel-Bielowka, S., Paluch, M., and Casalini, R. (2005) Supercooled Dynamics of Glass-forming Liquids and Polymers under Hydrostatic Pressure, Rep. Prog. Phys. 68, 1405-1478.CrossRefADSGoogle Scholar
  15. 15.
    Casalini, R. and Roland, C.M. (2005) A Thermodynamic Interpretation of the Scaling of the Dynamics of Supercooled Liquids, J. Chem. Phys., submitted.Google Scholar
  16. 16.
    Roland, C.M., Feldman, J.L., and Casalini, R. (2005) Scaling of the Local Dynamics and the Intermolecular Potential, J. Non-Cryst. Solids, 352, 4895-4899.CrossRefADSGoogle Scholar
  17. 17.
    Casalini, R and Roland, C.M. (2005) Temperature and Density Effects on the Local Segmental and Global Chain Dynamics of Poly(oxybutylene), Macromolecules 38 1779-1788.CrossRefADSGoogle Scholar
  18. 18.
    Roland, C.M., Casalini, R., and Paluch, M. (2004) Effect of Volume and Tempera-ture on the Global and Segmental Dynamics in Polypropylene Glycol and 1,4-polyisoprene, J. Polym. Sci. Polym. Phys. Ed. 42, 4313-4319.Google Scholar
  19. 19.
    Ngai, K.L. (1979) Disorder Effects on Relaxation Processes (R. Richert and A. Blumern, eds.), Springer-Verlag, Berlin, pp. 89-150.Google Scholar
  20. 20.
    Ngai, K.L., Casalini, R., and Roland, C.M. (2005) Volume and Temperature Dependences of the Global and Segmental Dynamics in Polymers: Functional Forms and Implication on the Glass Transition, Macromolecules 38, 4363-4370.CrossRefADSGoogle Scholar
  21. 21.
    Ngai, K.L., Casalini, R., Capacciolli, S., Paluch, M., and Roland, C.M. (2005) Dis-persion of the Structural Relaxation and the Vitrification of Liquids, Adv. Chem. Phys., submitted.Google Scholar
  22. 22.
    Ngai, K.L. and Paluch, M. (2004) Classification of Secondary Relaxation in Glass-formers Based on Dynamic Properties, J. Chem. Phys. 120, 857-873.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • C. Mike Roland
    • 1
  • Ricardo Casalini
    • 2
  1. 1.Chemistry DivisionNaval Research LaboratoryWashingtonUSA
  2. 2.Chemistry DepartmentGeorge Mason UnivUSA

Personalised recommendations