Skip to main content

Positron annihilation lifetime spectroscopy and atomistic modeling – effective tools for the disordered condensed systems characterization

  • Conference paper
Soft Matter under Exogenic Impacts

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 242))

Abstract

The complex structure-property relationships in the disordered systems under normal and exogenic conditions can be understood after characterizing the spatial arrangement of constituents. Here, an integral approach including the relevant experimental technique, phenomenological, and theoretical analyses as well as atomistic modeling is presented. Application of such a combined approach is demonstrated for the cases of glycerol and propylene glycol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandt, W. and Dupasquier, A. (eds.) (1983) Positron Solid State Physics, North- Holland, Amsterdam.

    Google Scholar 

  2. Jean, Y.C. (1995) Characterizing free volume and holes in polymers by positron annihilation spectroscopy in Dupasquer, A. (ed.) Positron Spectroscopy of Solids, IOS, Ohmsha, Amsterdam, p. 563.

    Google Scholar 

  3. Bartoš, J. (2000) Positron annihilation spectroscopy of polymers and rubbers in R.A. Meyers (eds.) Encyclopedia of Analytical Chemistry, Wiley & Sons, Chichester, p. 7968.

    Google Scholar 

  4. Jean, Y.C., Mallon, P.E., and Schrader, D.M. (eds.) (2003) Principles and Applica-tions of Positron & Positronium Chemistry, World Scientific Publ., Ne rsey. w Je

    Google Scholar 

  5. Bartoš, J., Šauša, O., and Krištiak, J. Annihilation response of the ortho-positronium probe from positron annihilation lifetime spectroscopy and its relationships to the free volume and dynamics of glass-forming systems in ARW NATO Series: Nonlinear Dielectric Phenomena in Complex Liquids, Kluwer, Acad. Publ., Dordrecht, The Netherlands, p. 289.

    Google Scholar 

  6. Bartoš, J., Šauša, O., Krištiak, J., Blochowicz, T., and Rössler, E. (2001) J. Phys.- Cond. Matter 13, 11473.

    Article  ADS  Google Scholar 

  7. Šauša, O., Bartoš, J., and Krištiak, J. to be published.

    Google Scholar 

  8. Bartoš, J., Šauša, O., Bandžuch, P., Zrubcová, J., and Krištiak, J. (2002) J. Non-Cryst. Solids 307 -310,417.

    Google Scholar 

  9. Kovacs, A. (1963) Adv. Polym. Sci. 3, 394.

    Article  Google Scholar 

  10. Parks, G.S. and Huffman, H.M. (1927) J. Phys. Chem. 11, 1842.

    Article  Google Scholar 

  11. Angell, C.A. (1985) Strong and fragile liquids in Ngai, K., Wright, G.S. (eds.) Relaxations in Complex Systems, NTIS, Springfield, p. 1.

    Google Scholar 

  12. Leon, C., Ngai, K., and Roland, C.M. (1999) J. Chem. Phys. 110, 11585.

    Article  ADS  Google Scholar 

  13. Pawlus, S., Bartoš, J., Šauša, O., Krištiak, J., and Paluch, M. (2005) J. Chem. Phys. 124, 104505.

    Article  ADS  Google Scholar 

  14. Lunkenheimer, P. and Loidl, A. (2002) Chem. Phys. 284, 205.

    Article  ADS  Google Scholar 

  15. Donth, E., The Glass Transition, Springer, Berlin, 2001.

    Google Scholar 

  16. Bartoš, J., Šauša, O., Raþko, D., Krištiak, J., and Fontanella, J.J. (2005) J. Non-Cryst. Solids 351, 2599.

    Article  ADS  Google Scholar 

  17. Stickel, F.J. (1995) Ph.D. Thesis, Shaker-Verlag, Aachen.

    Google Scholar 

  18. Schönhals, A. (2001) Europhys. Letts. 56, 815.

    Article  ADS  Google Scholar 

  19. Tao, J. (1972) J. Chem. Phys. 56, 5499; Eldrup, M., Lightbody, D., Sherwood, J.N. (1981) Chem. Phys. 63, 51; Nakanishi, H., Wang, S.J., and Jean, Y.C. (1988) in S.C. Sharma (eds.), Positron Annihilation Studies of Fluids, World Science, Singapore, p. 292.

    Google Scholar 

  20. Goworek, B. (1999)Acta Phys. Polonica A 95, 557; Olson, B.G., Prodpran, T., and Jamieson, A.M., Nazarenko, S. (2002) Polymer43, 6775.

    Google Scholar 

  21. Consolati, G. (2002) J. Chem. Phys. 117, 7279.

    Article  ADS  Google Scholar 

  22. Cohen, M.H. and Grest, G.S. (1979) Phys. Rev. B20,1077; Grest, G.S., and Cohen, M.H. (1980) Phys. Rev. B21, 4113; Grest, G.S. and Cohen,M.H. (1981) Adv. Chem. Phys. 48, 455.

    Google Scholar 

  23. Procacci, P., Darden, T.A., Paci, E., and Marchi, M. (1996) J. Phys. Chem. 100, 10464.

    Article  Google Scholar 

  24. Raþko, D., Chelli, R., Bartoš, J., Cardini, G. and Califano, S. (2005) Eur. Phys. J. E32, 289.

    ADS  Google Scholar 

  25. Angell, C.A., and Wang, L.M. (2003) Biophys. Chem. 105, 621.

    Article  Google Scholar 

  26. Sastry, S., Truskett, T.M., Debenedetti, P.G., Torquato, S., and Stillin ger, F.H. (1998) Mol. Phys. 95, 289.

    Article  ADS  Google Scholar 

  27. McCullagh, C.M., Yu, Z., Jamiesson, A.M., Blackwell, J. and McGervey, J.D. (1995) Macromole cules 28, 6100; Yu, Z. (1995) Ph.D. thesis, Case Western Reserve University, Cleveland, OH.

    Google Scholar 

  28. Götze, W., and Sjörgen, L., (1992) Rep. Progr. Phys. 55, 241.

    Article  Google Scholar 

  29. Paluch, M., Casalini, R., and Roland, C.M. (2003) Phys. Rev. E67, 021508.

    ADS  Google Scholar 

  30. Novikov, V.N., and Sokolov, A.P. (2003) Phys. Rev. E67, 031507.

    ADS  Google Scholar 

  31. Adichtchev, S., Blochowicz, T., Tschirwitz, Ch., Novikov, V.N., and Rössler, E.A. (2003) Phys. Rev. E68, 011504.

    ADS  Google Scholar 

  32. Götze, W. (1999) J. Phys.-Cond. Matt. 11, A1.

    Article  Google Scholar 

  33. Ngai, L.K. (1979) Comment Solid State Phys. 9, 127; Ngai, K.L., Rendell, R.W. (1997) in Fourkas, J.T., Kivelson, D., Mohanty, U., and Nelson, K. (eds.)Super- cooled Liquids. Advances and Novel Applications, ACS Symposium Series, Vol. 676 Amer. Chem. Soc. Washington, DC p. 45.

    Google Scholar 

  34. Casalini, R., Ngai, K.L., and Roland, C.M. (2003) Phys. Rev. B68, 014201.

    ADS  Google Scholar 

  35. Ngai, K.L., and Paluch, M. (2004) J. Chem. Phys. 120, 857.

    Article  ADS  Google Scholar 

  36. Ngai, K.L. (2005) J. Non-Cryst. Solids 351, 2635.

    Article  ADS  Google Scholar 

  37. Ngai, K.L., Lunkenheimer, P., Leon, C., Scheneider, U., Brand, R., and Loidl, A. (2001) J. Chem. Phys. 115, 1405.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Bartoš, J., Račko, D., Šauša, O., Krištiak, J. (2007). Positron annihilation lifetime spectroscopy and atomistic modeling – effective tools for the disordered condensed systems characterization. In: Rzoska, S.J., Mazur, V.A. (eds) Soft Matter under Exogenic Impacts. NATO Science Series II: Mathematics, Physics and Chemistry, vol 242. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5872-1_7

Download citation

Publish with us

Policies and ethics