Skip to main content

Global phase behavior of supercritical water – environmentally significant organic chemicals mixtures

  • Conference paper
Soft Matter under Exogenic Impacts

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 242))

  • 793 Accesses

Abstract

Recent developments of the global phase equilibria studies of binary mixtures provide some basic ideas of how the required methods can be developed based on global phase diagrams for visualization of the phase behavior of mixtures. The mapping of the global equilibrium surface in the parameter space of the equation of state (EoS) model provides the most comprehensive system of criteria for predicting binary mixture phase behavior. The main types of phase behavior for environmentally significant organic chemicals in aqueous environments are considered using structure-property correlations for the critical parameters of substances. Analytic expressions for azeotropy prediction for cubic EoS are derived. A local mapping concept is introduced to describe thermodynamically consistently the saturation curve of water.

The classes of environmentally significant chemicals (polycyclic aromatic hydrocarbons – PAH, polychlorinated biphenyls – PCB, polychlorinated dibenzo-p-dioxins and furans, and selected pesticides) are considered and main sources of the property data are examined. Vapor pressure, heat of vaporization, and critical parameter estimations for pure components were chosen for seeking a correlation between the octanol-water partition coefficients K OW and the EoS binary interaction parameters – k 12. The assessment of thermodynamic and phase behavior of representatives for different pollutants is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van Konynenburg, P. H. and Scott, R. L. (1980) Critical lines and phase equilibria in binary van der Waals mixtures, Phil. Trans. Roy. Soc. London 298, 495-540.

    Article  ADS  Google Scholar 

  2. Furman, D. and Griffiths, R. B. (1978) Global phase diagram for a van der Waals model of a binary mixture, Phys. Rev A 17, 1139-1149.

    Article  ADS  Google Scholar 

  3. Boshkov, L. Z. (1992) The phase tree of binary fluids: principle, development and thermodynamics, Proc. Int. Symp. On Solubility Phenomena, pp.12-13.

    Google Scholar 

  4. Mazur, V. A., Boshkov, L. Z., and Murakhovsky, V. G. (1984).Global phase behavior in binary Lennard-Jones mixtures, Phys. Lett. A 104, 415-418.

    Article  ADS  Google Scholar 

  5. Deiters, U. K. and Pegg, J. L. (1989) Systematic investigation of the phase behavior of binary fluid mixtures. I. Calculations based on the Redlich-Kwong equation of state, J. Chem. Phys. 90, 6632-6641.

    Article  ADS  Google Scholar 

  6. Soave, G. (1972) Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27, 1197-1203.

    Article  Google Scholar 

  7. Nebelenchuk, V. and Mazur, V. (1991) Transport properties of dense fluids via spherical models of the interaction potential, Physica A 178, 123-148.

    Article  ADS  Google Scholar 

  8. Mollerup, J. (1998) Unification of the two-parameter equation of state and the principle of corresponding states, Fluid Phase Equilibria 148, 1-19.

    Article  Google Scholar 

  9. Wagner, W. and Pruß, A. (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Ref. Data 31, 387-535.

    Article  ADS  Google Scholar 

  10. Boshkov, L. Z. and Mazur, V. A. (1985) Phase behaviour of the two-component Lennard-Jones fluid, Dep. at the VINITI, No. 6844-B85.

    Google Scholar 

  11. Sadus, R. and Wang, Ji. (2003) Phase behaviour of binary mixtures: a global phase diagram solely in terms of pure component properties, Fluid Phase Equil. 214, 67-78.

    Article  Google Scholar 

  12. Wakeham, W., Cholakov, G., and Roumiana, S. (2002) Liquid density and critical properties of hydrocarbons estimated from molecular structure, J. Chem. Eng. Data 47, 559-570.

    Article  Google Scholar 

  13. Tsonopoulos, C. and Wilson, G. M. (1983) High-temperature mutual solubilities of hydrocarbons and water, AIChE J. 29(6), 990-993.

    Article  Google Scholar 

  14. Tsonopulos, C. (1999) Thermodynamic analysis of the mutual solubilities of normal alkanes and water, Fluid Phase Equil. 156, 21-33.

    Article  Google Scholar 

  15. Polischuk, I., Wisniak, J., and Segura, H. (2003) Simultaneous prediction of the critical and subcritical phase behaviour in mixtures using equations of state. II Carbon dioxide - heavy n-alkanes, Chem. Eng. Sci. 58, 2529-2550.

    Article  Google Scholar 

  16. Delle Site, A. (1996) Vapor pressure of environmentally significant organic chemicals: A review of methods and data at ambient temperature, J. Phys. Ref. Data 26, 157-193.

    Article  ADS  Google Scholar 

  17. Verhaar, H., Ramos, E., and Hermens, J. (1996) Classifying environmental pollutants. 2.: Separation of class 1 (baseline toxity) and class 2 (polar narcosis) type compounds based on chemical descriptors, Journal of Chemometrics 10, 149-162.

    Article  Google Scholar 

  18. Hehre, W., Burke, L., and Shusterman, A.(1993) SPARTAN User’s Guide (Wavefuncion. Inc., Irvine, CA).

    Google Scholar 

  19. Alwani, Z. and Schneider, G., (1967) Phase equilibria and critical phenomena in the system benzene - H2O between 250 and 368 °C up to 3700 bar, Ber. Bunsenges. Phys. Chem. 71, p.633.

    Google Scholar 

  20. Connolly, J. (1966) Solubility of hydrocarbons in water near the critical solution temperature, J. Chem. Eng. Data 11, 13.

    Article  Google Scholar 

  21. Sangster, J. (1997) Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry (John Willey & Sons Inc., NY).

    Google Scholar 

  22. Mazur, V., Boshkov, L., and Artemenko, S. (1998) Global phase behaviour of natural refrigerant mixtures, Proc. IIR-Gustav Lorentzen Conference: Natural Working Fluids, 495-504.

    Google Scholar 

  23. Kolafa, J. (1999) Azeotropic phenomena in the global phase diagram of the Redlich- Kwong equation of state, Phys. Chem. Chem. Phys. 1, 5665-5670.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Artemenko, S.V., Mazur, V.A. (2007). Global phase behavior of supercritical water – environmentally significant organic chemicals mixtures. In: Rzoska, S.J., Mazur, V.A. (eds) Soft Matter under Exogenic Impacts. NATO Science Series II: Mathematics, Physics and Chemistry, vol 242. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5872-1_18

Download citation

Publish with us

Policies and ethics